Ions | Ag+ | K+ | Na+ | H+ | \(\text{NO}_{3}^{-}\) | Cl- | \(\text{SO}^{2-}_{4}\) | OH- | CH3COO- |
\(\Lambda_0\) | 6.2 | 7.4 | 5.0 | 35.0 | 7.2 | 7.6 | 16.0 | 19.9 | 4.1 |
List I | List II | ||
(P) | Titrate: KCl Titrant: AgNO3 | (1) | ![]() |
(Q) | Titrate: AgNO3 Titrant: KCl | (2) | ![]() |
(R) | Titrate: NaOH Titrant: HCl | (3) | ![]() |
(S) | Titrate: NaOH Titrant: CH3COOH | (4) | ![]() |
(5) | ![]() |
A temperature difference can generate e.m.f. in some materials. Let $ S $ be the e.m.f. produced per unit temperature difference between the ends of a wire, $ \sigma $ the electrical conductivity and $ \kappa $ the thermal conductivity of the material of the wire. Taking $ M, L, T, I $ and $ K $ as dimensions of mass, length, time, current and temperature, respectively, the dimensional formula of the quantity $ Z = \frac{S^2 \sigma}{\kappa} $ is:
Let $ a_0, a_1, ..., a_{23} $ be real numbers such that $$ \left(1 + \frac{2}{5}x \right)^{23} = \sum_{i=0}^{23} a_i x^i $$ for every real number $ x $. Let $ a_r $ be the largest among the numbers $ a_j $ for $ 0 \leq j \leq 23 $. Then the value of $ r $ is ________.
Let $ y(x) $ be the solution of the differential equation $$ x^2 \frac{dy}{dx} + xy = x^2 + y^2, \quad x > \frac{1}{e}, $$ satisfying $ y(1) = 0 $. Then the value of $ 2 \cdot \frac{(y(e))^2}{y(e^2)} $ is ________.