A wooden block of mass M lies on a rough floor. Another wooden block of the same mass is hanging from the point O through strings as shown in the figure. To achieve equilibrium, the coefficient of static friction between the block on the floor and the floor itself is
In an experiment to determine the figure of merit of a galvanometer by half deflection method, a student constructed the following circuit. He applied a resistance of \( 520 \, \Omega \) in \( R \). When \( K_1 \) is closed and \( K_2 \) is open, the deflection observed in the galvanometer is 20 div. When \( K_1 \) is also closed and a resistance of \( 90 \, \Omega \) is removed in \( S \), the deflection becomes 13 div. The resistance of galvanometer is nearly:
One of the equations that are commonly used to define the wave properties of matter is the de Broglie equation. Basically, it describes the wave nature of the electron.
Very low mass particles moving at a speed less than that of light behave like a particle and waves. De Broglie derived an expression relating to the mass of such smaller particles and their wavelength.
Plank’s quantum theory relates the energy of an electromagnetic wave to its wavelength or frequency.
E = hν …….(1)
E = mc2……..(2)
As the smaller particle exhibits dual nature, and energy being the same, de Broglie equated both these relations for the particle moving with velocity ‘v’ as,
This equation relating the momentum of a particle with its wavelength is de Broglie equation and the wavelength calculated using this relation is the de Broglie wavelength.