Given: \[ \tau = mB \] \[ K_{\theta} = \frac{IA \cdot NB}{I \cdot \theta} = \frac{A \cdot N \cdot B}{K} \quad \text{(1)} \] \[ \left( \frac{\theta}{\theta_1} \right) = \frac{I_1}{I_2} = \frac{A \cdot N \cdot B}{K} \quad \text{(2)} \] \[ \Rightarrow \lambda = a \cdot N \quad \text{(3)} \] \[ V_{\theta} = I \cdot R = \text{Current Sensitivity} \quad \text{(4)} \] \[ \text{Voltage sensitivity} \propto \text{Current sensitivity} \]
Correct Answer: (A)
The formulae involve relationships for current and voltage sensitivities. Equation (1) gives the relationship between the magnetic field \( B \) and the area of the coil \( A \). From Equation (2), we can deduce that voltage sensitivity is directly proportional to current sensitivity. This shows a clear relation where \( R \) remains constant.
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: