Given: \[ \tau = mB \] \[ K_{\theta} = \frac{IA \cdot NB}{I \cdot \theta} = \frac{A \cdot N \cdot B}{K} \quad \text{(1)} \] \[ \left( \frac{\theta}{\theta_1} \right) = \frac{I_1}{I_2} = \frac{A \cdot N \cdot B}{K} \quad \text{(2)} \] \[ \Rightarrow \lambda = a \cdot N \quad \text{(3)} \] \[ V_{\theta} = I \cdot R = \text{Current Sensitivity} \quad \text{(4)} \] \[ \text{Voltage sensitivity} \propto \text{Current sensitivity} \]
Correct Answer: (A)
The formulae involve relationships for current and voltage sensitivities. Equation (1) gives the relationship between the magnetic field \( B \) and the area of the coil \( A \). From Equation (2), we can deduce that voltage sensitivity is directly proportional to current sensitivity. This shows a clear relation where \( R \) remains constant.
Show that the energy required to build up the current \( I \) in a coil of inductance \( L \) is \( \frac{1}{2} L I^2 \).
If $ \lim_{x \to 0} \left( \frac{\tan x}{x} \right)^{\frac{1}{x^2}} = p $, then $ 96 \log_e p $ is equal to _______
Let one focus of the hyperbola $ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 $ be at $ (\sqrt{10}, 0) $, and the corresponding directrix be $ x = \frac{\sqrt{10}}{2} $. If $ e $ and $ l $ are the eccentricity and the latus rectum respectively, then $ 9(e^2 + l) $ is equal to:
The largest $ n \in \mathbb{N} $ such that $ 3^n $ divides 50! is: