Solution:
Using the formula for the current through the conductor, which relates the current at different temperatures:
\[
i_0 R_0 = i_{100} R_{100} \quad \text{[For the same source]}
\]
This gives:
\[
2 R_0 = 1.2 R_0 [1 + 100\alpha] \quad \Rightarrow \quad 1 + 100\alpha = \frac{5}{3} \quad \Rightarrow \quad 100\alpha = \frac{2}{3}
\]
Now, calculate \( \alpha \):
\[
50 \alpha = \frac{1}{3}
\]
Thus, the current at 50°C will be:
\[
i_{50} R_{50} = i_0 R_0
\]
Substituting values:
\[
i_{50} = \frac{i_0 R_0}{R_{50}} = \frac{2 R_0}{R_0 (1 + 50\alpha)} = \frac{2}{1 + \frac{1}{3}} = \frac{2}{\frac{4}{3}} = 1.5 \, \text{A}
\]
Thus, the current at 50°C is \( 1.5 \, \text{A} = 1500 \, \text{mA} \).
Therefore, the correct answer is \( \boxed{1500} \, \text{mA} \).
Assuming in forward bias condition there is a voltage drop of \(0.7\) V across a silicon diode, the current through diode \(D_1\) in the circuit shown is ________ mA. (Assume all diodes in the given circuit are identical) 


For the given logic gate circuit, which of the following is the correct truth table ? 
Method used for separation of mixture of products (B and C) obtained in the following reaction is: 
Which of the following best represents the temperature versus heat supplied graph for water, in the range of \(-20^\circ\text{C}\) to \(120^\circ\text{C}\)? 