Given Data
Refractive index of glass, \( \mu_g = 1.5 \)
Refractive index of water, \( \mu_w = 1.33 \)
Critical angle for glass, \( \theta_1 \)
Critical angle for water, \( \theta_2 \)
Critical Angle Formula
The critical angle \( \theta_c \) for a boundary between two media is given by:
\[
\sin \theta_c = \frac{\mu_2}{\mu_1}
\]
where \( \mu_1 \) is the refractive index of the denser medium (glass) and \( \mu_2 \) is the refractive index of the less dense medium (water).
Critical Angle for Glass-Water Interface
For the glass-water interface:
\[
\sin \theta_c = \frac{\mu_w}{\mu_g} = \frac{1.33}{1.5} \approx 0.8867
\]
Therefore:
\[
\theta_c = \sin^{-1}(0.8867) \approx 62.5^\circ
\]
Comparison with Given Critical Angles
The critical angle for glass (\( \theta_1 \)) is:
\[
\sin \theta_1 = \frac{1}{\mu_g} = \frac{1}{1.5} \approx 0.6667 \Rightarrow \theta_1 \approx 41.8^\circ
\]
The critical angle for water (\( \theta_2 \)) is:
\[
\sin \theta_2 = \frac{1}{\mu_w} = \frac{1}{1.33} \approx 0.7519 \Rightarrow \theta_2 \approx 48.8^\circ
\]
The critical angle for the glass-water interface (\( \theta_c \approx 62.5^\circ \)) is greater than both \( \theta_1 \) and \( \theta_2 \).
Conclusion
The critical angle for the glass-water interface is greater than the critical angle for water (\( \theta_2 \)).
Final Answer
\begin{center}
\boxed{\text{(C) greater than } \theta_2}
\end{center}