The crystal field stabilization energy (CFSE) depends on the oxidation state and the ligand field strength.
Generally:
- The higher the oxidation state of the metal, the stronger the ligand field and the higher the CFSE.
- \( \text{NH}_3 \) is a stronger field ligand than \( \text{en} \) (ethylenediamine).
Thus: - \( [\text{Co(NH}_3)_4]^{2+} \) will have the lowest CFSE, as it is in a lower oxidation state.
- \( [\text{Co(NH}_3)_6]^{2+} \) has a higher CFSE compared to \( [\text{Co(NH}_3)_4]^{2+} \).
- \( [\text{Co(NH}_3)_6]^{3+} \) has a higher oxidation state, leading to higher CFSE.
- \( [\text{Co(en)}_3]^{3+} \) has the highest CFSE due to the strong ligand field of \( \text{en} \).
Hence, the correct order is:
\[[\text{Co(NH}_3)_4]^{2+} < [\text{Co(NH}_3)_6]^{2+}<[\text{Co(NH}_3)_6]^{3+} < [\text{Co(en)}_3]^{3+}\]Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.