\([CoF_6]^{3-:}\) \(Co^{3+} (d^6)\) with weak field ligand \(F^-\). Weak field ligands do not cause electron pairing, so:
\(\uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \quad (\text{u.e.} = 4)\)
\([MnBr_4]^{2-:}\) \(Mn^{2+} (d^5)\) with weak field ligand \(Br^-\). No pairing occurs
:\(\uparrow \uparrow \uparrow \uparrow \uparrow \quad (\text{u.e.} = 5)\)
\([Fe(CN)_6]^{3-:}\) \(Fe^{3+} (d^5)\) with strong field ligand \(CN^-\). Strong field ligands cause electron pairing:
\(\uparrow \downarrow \uparrow \downarrow \uparrow \quad (\text{u.e.} = 1)\)
\([Mn(CN)_6]^{3-:}\) \(Mn^{3+} (d^4)\) with strong field ligand \(CN^-\). Pairing occurs: \(\uparrow \downarrow \uparrow \downarrow \quad (\text{u.e.} = 2)\)
Order of magnetic moments: The spin-only magnetic moment is proportional to the number of unpaired electrons (u.e.): \([Fe(CN)_6]^{3-} < [Mn(CN)_6]^{3-} < [CoF_6]^{3-} < [MnBr_4]^{2-}\)
Calculate the potential for half-cell containing 0.01 M K\(_2\)Cr\(_2\)O\(_7\)(aq), 0.01 M Cr\(^{3+}\)(aq), and 1.0 x 10\(^{-4}\) M H\(^+\)(aq).

In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
Method used for separation of mixture of products (B and C) obtained in the following reaction is: 