\([CoF_6]^{3-:}\) \(Co^{3+} (d^6)\) with weak field ligand \(F^-\). Weak field ligands do not cause electron pairing, so:
\(\uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \quad (\text{u.e.} = 4)\)
\([MnBr_4]^{2-:}\) \(Mn^{2+} (d^5)\) with weak field ligand \(Br^-\). No pairing occurs
:\(\uparrow \uparrow \uparrow \uparrow \uparrow \quad (\text{u.e.} = 5)\)
\([Fe(CN)_6]^{3-:}\) \(Fe^{3+} (d^5)\) with strong field ligand \(CN^-\). Strong field ligands cause electron pairing:
\(\uparrow \downarrow \uparrow \downarrow \uparrow \quad (\text{u.e.} = 1)\)
\([Mn(CN)_6]^{3-:}\) \(Mn^{3+} (d^4)\) with strong field ligand \(CN^-\). Pairing occurs: \(\uparrow \downarrow \uparrow \downarrow \quad (\text{u.e.} = 2)\)
Order of magnetic moments: The spin-only magnetic moment is proportional to the number of unpaired electrons (u.e.): \([Fe(CN)_6]^{3-} < [Mn(CN)_6]^{3-} < [CoF_6]^{3-} < [MnBr_4]^{2-}\)
Calculate the potential for half-cell containing 0.01 M K\(_2\)Cr\(_2\)O\(_7\)(aq), 0.01 M Cr\(^{3+}\)(aq), and 1.0 x 10\(^{-4}\) M H\(^+\)(aq).
Let one focus of the hyperbola $ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 $ be at $ (\sqrt{10}, 0) $, and the corresponding directrix be $ x = \frac{\sqrt{10}}{2} $. If $ e $ and $ l $ are the eccentricity and the latus rectum respectively, then $ 9(e^2 + l) $ is equal to:
The largest $ n \in \mathbb{N} $ such that $ 3^n $ divides 50! is: