Calculate the potential for half-cell containing 0.01 M K\(_2\)Cr\(_2\)O\(_7\)(aq), 0.01 M Cr\(^{3+}\)(aq), and 1.0 x 10\(^{-4}\) M H\(^+\)(aq).
The Nernst equation is given by: \[ E = E^\circ - \frac{0.0591}{n} \log \left( \frac{[\text{products}]}{[\text{reactants}]} \right) \] Where:
We are given:
Substituting these values into the Nernst equation: \[ E = 1.33 - \frac{0.0591}{6} \log \left( \frac{(0.01)^2 \times 1}{(0.01) \times (1.0 \times 10^{-4})^{14}} \right) \]
Simplifying the expression inside the logarithm: \[ \frac{(0.01)^2 \times 1}{(0.01) \times (1.0 \times 10^{-4})^{14}} = \frac{0.0001}{0.01 \times (1.0 \times 10^{-4})^{14}} = \frac{0.0001}{10^{-58}} = 10^{54} \]
Now substitute \( 10^{54} \) back into the Nernst equation: \[ E = 1.33 - \frac{0.0591}{6} \log(10^{54}) \] Since \( \log(10^{54}) = 54 \), we get: \[ E = 1.33 - \frac{0.0591}{6} \times 54 \]
Performing the multiplication: \[ \frac{0.0591 \times 54}{6} = 0.5319 \] So: \[ E = 1.33 - 0.5319 = 0.7981 \, \text{V} \]
The final value of \( E \) is approximately: \[ E = 0.798 \, \text{V} \]

How do the peddler from ‘The Rattrap’ and ‘the office boy’ from ‘Poets and Pancakes’ compare in terms of their frustration, status, and grudges against others?

मित्रों के साथ स्टेडियम में मैच देखने का आनंद — इस विषय पर लगभग 120 शब्दों में रचनात्मक लेख लिखिए।