Calculate the potential for half-cell containing 0.01 M K\(_2\)Cr\(_2\)O\(_7\)(aq), 0.01 M Cr\(^{3+}\)(aq), and 1.0 x 10\(^{-4}\) M H\(^+\)(aq).
The Nernst equation is given by: \[ E = E^\circ - \frac{0.0591}{n} \log \left( \frac{[\text{products}]}{[\text{reactants}]} \right) \] Where:
We are given:
Substituting these values into the Nernst equation: \[ E = 1.33 - \frac{0.0591}{6} \log \left( \frac{(0.01)^2 \times 1}{(0.01) \times (1.0 \times 10^{-4})^{14}} \right) \]
Simplifying the expression inside the logarithm: \[ \frac{(0.01)^2 \times 1}{(0.01) \times (1.0 \times 10^{-4})^{14}} = \frac{0.0001}{0.01 \times (1.0 \times 10^{-4})^{14}} = \frac{0.0001}{10^{-58}} = 10^{54} \]
Now substitute \( 10^{54} \) back into the Nernst equation: \[ E = 1.33 - \frac{0.0591}{6} \log(10^{54}) \] Since \( \log(10^{54}) = 54 \), we get: \[ E = 1.33 - \frac{0.0591}{6} \times 54 \]
Performing the multiplication: \[ \frac{0.0591 \times 54}{6} = 0.5319 \] So: \[ E = 1.33 - 0.5319 = 0.7981 \, \text{V} \]
The final value of \( E \) is approximately: \[ E = 0.798 \, \text{V} \]