The total energy (T.E.) of an electron in Bohr's \(n^\text{th}\) orbit is given by:
\[
\text{T.E.} = -13.6 \frac{Z^2}{n^2} \, \text{eV/atom}.
\]
The kinetic energy (K.E.) of the electron is the negative of the total energy:
\[
\text{K.E.} = -\text{T.E.} = 13.6 \frac{Z^2}{n^2}.
\]
Thus, K.E. is proportional to \(\frac{Z^2}{n^2}\). Calculate the K.E. for each option:
1. For the first orbit of \(H\) atom (\(n = 1, Z = 1\)):
\[
\text{K.E.} \propto \frac{1^2}{1^2} = 1.
\]
2. For the first orbit of \(He^+\) (\(n = 1, Z = 2\)):
\[
\text{K.E.} \propto \frac{2^2}{1^2} = 4.
\]
3. For the second orbit of \(He^+\) (\(n = 2, Z = 2\)):
\[
\text{K.E.} \propto \frac{2^2}{2^2} = 1.
\]
4. For the second orbit of \(Li^{2+}\) (\(n = 2, Z = 3\)):
\[
\text{K.E.} \propto \frac{3^2}{2^2} = \frac{9}{4}.
\]
Comparing these values, the highest K.E. is associated with the first orbit of \(He^+\).