The correct answer is: 85.
\(\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(e=\frac{5}{4})\)
So,
\(b^2=a^2(\frac{25}{16}-1)⇒b=\frac{3}{4}a\)
Also, \((\frac{8}{√5}, \frac{12}{5})\) lies on the given hyperbola.
So, Equation of normal
\(⇒8\sqrt5x+15y=100\)
So,
\(β=15\,and \,λ=100\)
Gives
\(λ-β=85\)
The equivalent resistance between the points \(A\) and \(B\) in the given circuit is \[ \frac{x}{5}\,\Omega. \] Find the value of \(x\). 
Method used for separation of mixture of products (B and C) obtained in the following reaction is: 
In the following \(p\text{–}V\) diagram, the equation of state along the curved path is given by \[ (V-2)^2 = 4ap, \] where \(a\) is a constant. The total work done in the closed path is: 
Let \( ABC \) be a triangle. Consider four points \( p_1, p_2, p_3, p_4 \) on the side \( AB \), five points \( p_5, p_6, p_7, p_8, p_9 \) on the side \( BC \), and four points \( p_{10}, p_{11}, p_{12}, p_{13} \) on the side \( AC \). None of these points is a vertex of the triangle \( ABC \). Then the total number of pentagons that can be formed by taking all the vertices from the points \( p_1, p_2, \ldots, p_{13} \) is ___________.
Hyperbola is the locus of all the points in a plane such that the difference in their distances from two fixed points in the plane is constant.
Hyperbola is made up of two similar curves that resemble a parabola. Hyperbola has two fixed points which can be shown in the picture, are known as foci or focus. When we join the foci or focus using a line segment then its midpoint gives us centre. Hence, this line segment is known as the transverse axis.
