The correct answer is 63
\((1+x)^p(1-x)^q\)
\((1+px+\frac{p(p-1)}{2!}x^2+......)\)
\((1-qx+\frac{q(q-1)}{2!}x^2-......)\)
\(p-q=4\)
\(\frac{p(p-1)}{2}+\frac{q(q-1)}{2}-pq=-5\)
p2+q2 - p - 2 - 2pq=-10
(q+4)2 + q2 - (q-4) - q - 2(4+q)q = -10
q2 + 8q + 16 - q2 - q - 4 - q - 8q - 2q2 = -10
-2q=-22
so , q=11 and p=15
\(\therefore \) 2p + 3q = 2(15) + 3(11)
= 30 + 33
= 63
\[ \left( \frac{1}{{}^{15}C_0} + \frac{1}{{}^{15}C_1} \right) \left( \frac{1}{{}^{15}C_1} + \frac{1}{{}^{15}C_2} \right) \cdots \left( \frac{1}{{}^{15}C_{12}} + \frac{1}{{}^{15}C_{13}} \right) = \frac{\alpha^{13}}{{}^{14}C_0 \, {}^{14}C_1 \cdots {}^{14}C_{12}} \]
Then \[ 30\alpha = \underline{\hspace{1cm}} \]

The binomial expansion formula involves binomial coefficients which are of the form
(n/k)(or) nCk and it is calculated using the formula, nCk =n! / [(n - k)! k!]. The binomial expansion formula is also known as the binomial theorem. Here are the binomial expansion formulas.

This binomial expansion formula gives the expansion of (x + y)n where 'n' is a natural number. The expansion of (x + y)n has (n + 1) terms. This formula says:
We have (x + y)n = nC0 xn + nC1 xn-1 . y + nC2 xn-2 . y2 + … + nCn yn
General Term = Tr+1 = nCr xn-r . yr