The correct answer is 63
\((1+x)^p(1-x)^q\)
\((1+px+\frac{p(p-1)}{2!}x^2+......)\)
\((1-qx+\frac{q(q-1)}{2!}x^2-......)\)
\(p-q=4\)
\(\frac{p(p-1)}{2}+\frac{q(q-1)}{2}-pq=-5\)
p2+q2 - p - 2 - 2pq=-10
(q+4)2 + q2 - (q-4) - q - 2(4+q)q = -10
q2 + 8q + 16 - q2 - q - 4 - q - 8q - 2q2 = -10
-2q=-22
so , q=11 and p=15
\(\therefore \) 2p + 3q = 2(15) + 3(11)
= 30 + 33
= 63
Let $ (1 + x + x^2)^{10} = a_0 + a_1 x + a_2 x^2 + ... + a_{20} x^{20} $. If $ (a_1 + a_3 + a_5 + ... + a_{19}) - 11a_2 = 121k $, then k is equal to _______
The term independent of $ x $ in the expansion of $$ \left( \frac{x + 1}{x^{3/2} + 1 - \sqrt{x}} \cdot \frac{x + 1}{x - \sqrt{x}} \right)^{10} $$ for $ x>1 $ is:


For the circuit shown above, the equivalent gate is:
Let \( f : \mathbb{R} \to \mathbb{R} \) be a twice differentiable function such that \[ (\sin x \cos y)(f(2x + 2y) - f(2x - 2y)) = (\cos x \sin y)(f(2x + 2y) + f(2x - 2y)), \] for all \( x, y \in \mathbb{R}. \)
If \( f'(0) = \frac{1}{2} \), then the value of \( 24f''\left( \frac{5\pi}{3} \right) \) is:
The binomial expansion formula involves binomial coefficients which are of the form
(n/k)(or) nCk and it is calculated using the formula, nCk =n! / [(n - k)! k!]. The binomial expansion formula is also known as the binomial theorem. Here are the binomial expansion formulas.

This binomial expansion formula gives the expansion of (x + y)n where 'n' is a natural number. The expansion of (x + y)n has (n + 1) terms. This formula says:
We have (x + y)n = nC0 xn + nC1 xn-1 . y + nC2 xn-2 . y2 + … + nCn yn
General Term = Tr+1 = nCr xn-r . yr