Step 1: Use the parametric equations.
We are given the parametric equations \( x = 6 \cos \theta \) and \( y = 6 \sin \theta \). To eliminate the parameter \( \theta \), we use the Pythagorean identity \( \cos^2 \theta + \sin^2 \theta = 1 \).
Step 2: Square and add the equations.
Squaring both \( x \) and \( y \), we get:
\[
x^2 = 36 \cos^2 \theta, \quad y^2 = 36 \sin^2 \theta.
\]
Adding these two equations, we get:
\[
x^2 + y^2 = 36 (\cos^2 \theta + \sin^2 \theta) = 36 \times 1 = 36.
\]
Step 3: Conclusion.
Thus, the Cartesian equation of the curve is \( x^2 + y^2 = 36 \), which corresponds to option (A).