Step 1: Formula for Capacitance of a Spherical Capacitor
The capacitance of a spherical capacitor is given by:
\[
C = 4\pi \epsilon_0 \frac{r_1 r_2}{r_2 - r_1}
\]
where:
- \( C = 100 \) pF,
- \( r_2 - r_1 = 1 \) cm,
- \( \epsilon_0 = 8.85 \times 10^{-12} \) F/m.
Step 2: Solving for \( r_1 \)
Approximating for large radius:
\[
C = 4\pi \epsilon_0 \times r_1
\]
\[
100 \times 10^{-12} = 4\pi \times (8.85 \times 10^{-12}) r_1
\]
\[
r_1 = \frac{100 \times 10^{-12}}{4\pi \times 8.85 \times 10^{-12}}
\]
\[
\approx 10 \text{ cm}
\]
Conclusion
Thus, the correct answer is:
\[
10 \text{ cm}
\]