The magnetic field at the centre of a circular loop of radius \( r \) carrying current \( I \) is: \[ B = \frac{\mu_0 I}{2r} \]
The area \( A \) of a circle of radius \( r \) is: \[ A = \pi r^2 \Rightarrow r = \sqrt{\frac{A}{\pi}} \]
From \( B = \frac{\mu_0 I}{2r} \), solve for \( I \): \[ I = \frac{2Br}{\mu_0} \]
Magnetic moment \( M \) of a current loop is given by: \[ M = I \cdot A \] Substituting \( I \) from above: \[ M = \left( \frac{2Br}{\mu_0} \right) \cdot A \] Now substitute \( r = \sqrt{\frac{A}{\pi}} \): \[ M = \frac{2B}{\mu_0} \cdot A \cdot \sqrt{\frac{A}{\pi}} = \frac{2BA}{\mu_0} \sqrt{\frac{A}{\pi}} \]
The magnetic moment of the circular loop is: \[ M = \frac{2BA}{\mu_0} \sqrt{\frac{A}{\pi}} \] as required.
(b) If \( \vec{L} \) is the angular momentum of the electron, show that:
\[ \vec{\mu} = -\frac{e}{2m} \vec{L} \]
The sum of the spin-only magnetic moment values (in B.M.) of $[\text{Mn}(\text{Br})_6]^{3-}$ and $[\text{Mn}(\text{CN})_6]^{3-}$ is ____.