Given arithmetic progression (AP): 38, 55, 72, ...
The common difference is: \[ d = 55 - 38 = 17 \]
We want to find the average of all 3-digit numbers in this AP. The smallest 3-digit number ≥ 100 that fits the AP is: \[ a = 106 \] The largest 3-digit number ≤ 999 in the AP is: \[ l = 990 \]
Use the formula: \[ n = \frac{l - a}{d} + 1 = \frac{990 - 106}{17} + 1 = \frac{884}{17} + 1 = 52 + 1 = 53 \] But since 884 ÷ 17 = 52, the correct value is: \[ n = 52 \]
The sum of the AP terms is: \[ S_n = \frac{n}{2} \cdot (a + l) = \frac{52}{2} \cdot (106 + 990) = 26 \cdot 1096 = 28496 \]
\[ \text{Average} = \frac{S_n}{n} = \frac{28496}{52} = 548 \]
\[ \boxed{548} \] The average of all 3-digit terms in the arithmetic progression is 548.
If the sum of the first 10 terms of the series \[ \frac{4 \cdot 1}{1 + 4 \cdot 1^4} + \frac{4 \cdot 2}{1 + 4 \cdot 2^4} + \frac{4 \cdot 3}{1 + 4 \cdot 3^4} + \ldots \] is \(\frac{m}{n}\), where \(\gcd(m, n) = 1\), then \(m + n\) is equal to _____.
If \(\sum\)\(_{r=1}^n T_r\) = \(\frac{(2n-1)(2n+1)(2n+3)(2n+5)}{64}\) , then \( \lim_{n \to \infty} \sum_{r=1}^n \frac{1}{T_r} \) is equal to :