First of all we draw the graph, $y=x^{3}, y=\frac{1}{x}, x=2$ $\therefore$ Required area i.e., (OMPNO) $=\int\limits_{0}^{1} x^{3} d x+\int\limits_{1}^{2} \frac{1}{x} d x$ $=\left[\frac{x^{4}}{4}\right]_{0}^{1}+\left[\log _{e} x\right]_{1}^{2}$ $=\frac{1}{4}+\log _{e} 2$