8 cm
7 cm
We are given:
Step 1: Find the real depth using the water's refractive index: \[ \text{Real depth} = \mu_{\text{water}} \times \text{Apparent depth} = \frac{4}{3} \times 9 = 12 \, \text{cm} \]
Step 2: Use the real depth to find the new apparent depth: \[ \text{Apparent depth in liquid} = \frac{\text{Real depth}}{\mu_{\text{liquid}}} = \frac{12}{1.5} = 8 \, \text{cm} \]
Final Answer: \( \boxed{8 \, \text{cm} } \)
Given:
We know that the apparent depth is related to the refractive index and actual depth:
\[ d_{\text{app}} \propto \mu \]
\p>Thus, we have the relationship between the apparent depth in water and the apparent depth in the liquid:
\[ \frac{d_{\text{app}}^{\text{water}}}{d_{\text{app}}^{\text{liquid}}} = \frac{\mu_{\text{liquid}}}{\mu_{\text{water}}} \]
Substituting the given values:
\[ \frac{9}{d_{\text{app}}^{\text{liquid}}} = \frac{1.5}{\frac{4}{3}} \]
Simplifying the equation:
\[ \frac{9}{d_{\text{app}}^{\text{liquid}}} = \frac{1.5 \times 3}{4} = \frac{4.5}{4} = 1.125 \]
Solving for \( d_{\text{app}}^{\text{liquid}} \):
\[ d_{\text{app}}^{\text{liquid}} = \frac{9}{1.125} = 8 \, \text{cm} \]
Therefore, the apparent depth in the liquid is \( 8 \, \text{cm} \).