The horizontal range is:
\[\frac{u^2 \sin 2\theta}{g},\]
and the maximum height is:
\[\frac{u^2 \sin^2 \theta}{2g}.\]
Equating:
\[\frac{u^2 \sin 2\theta}{g} = \frac{u^2 \sin^2 \theta}{2g}.\]
Simplifying:
\[2 \sin \theta \cos \theta = \frac{\sin^2 \theta}{2}.\]
Substitute \(\sin 2\theta = 2 \sin \theta \cos \theta\):
\[4 \sin \theta \cos \theta = \sin^2 \theta \implies 4 = \tan \theta.\]
Thus:
\[\theta = \tan^{-1}(4).\]
Let $ f: \mathbb{R} \to \mathbb{R} $ be a twice differentiable function such that $$ f''(x)\sin\left(\frac{x}{2}\right) + f'(2x - 2y) = (\cos x)\sin(y + 2x) + f(2x - 2y) $$ for all $ x, y \in \mathbb{R} $. If $ f(0) = 1 $, then the value of $ 24f^{(4)}\left(\frac{5\pi}{3}\right) $ is: