The horizontal range is:
\[\frac{u^2 \sin 2\theta}{g},\]
and the maximum height is:
\[\frac{u^2 \sin^2 \theta}{2g}.\]
Equating:
\[\frac{u^2 \sin 2\theta}{g} = \frac{u^2 \sin^2 \theta}{2g}.\]
Simplifying:
\[2 \sin \theta \cos \theta = \frac{\sin^2 \theta}{2}.\]
Substitute \(\sin 2\theta = 2 \sin \theta \cos \theta\):
\[4 \sin \theta \cos \theta = \sin^2 \theta \implies 4 = \tan \theta.\]
Thus:
\[\theta = \tan^{-1}(4).\]
Let a line passing through the point $ (4,1,0) $ intersect the line $ L_1: \frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{4} $ at the point $ A(\alpha, \beta, \gamma) $ and the line $ L_2: x - 6 = y = -z + 4 $ at the point $ B(a, b, c) $. Then $ \begin{vmatrix} 1 & 0 & 1 \\ \alpha & \beta & \gamma \\ a & b & c \end{vmatrix} \text{ is equal to} $