The angle between vector \( (\vec{A}) \) and \( (\vec{A} - \vec{B}) \) is: 
Step 1: Understanding the Question:
We are required to find the angle, say \(\beta\), between the vector \( \vec{A} \) and the vector \( \vec{A} - \vec{B} \). From the diagram, the angle between vectors \( \vec{A} \) and \( \vec{B} \) is \(120^\circ\). Important Clarification:
When dealing with vector subtraction, the vector \( \vec{A} - \vec{B} \) is equivalent to adding vector \( \vec{A} \) with vector \( -\vec{B} \). Hence, the relevant angle for component resolution is the angle between \( \vec{A} \) and \( -\vec{B} \), not between \( \vec{A} \) and \( \vec{B} \). Since the angle between \( \vec{A} \) and \( \vec{B} \) is \(120^\circ\), the angle between \( \vec{A} \) and \( -\vec{B} \) becomes: \[ 180^\circ - 120^\circ = 60^\circ \] Step 2: Choosing a Coordinate System:
Let vector \( \vec{A} \) be along the positive x-axis. \[ \vec{A} = A\hat{i} \] The vector \( -\vec{B} \) makes an angle of \(60^\circ\) with \( \vec{A} \). Step 3: Resolving Vectors into Components:
The components of vector \( -\vec{B} \) are: \[ -\vec{B} = B\cos 60^\circ\,\hat{i} + B\sin 60^\circ\,\hat{j} \] \[ -\vec{B} = \frac{B}{2}\hat{i} + \frac{\sqrt{3}B}{2}\hat{j} \] Now, the resultant vector: \[ \vec{R} = \vec{A} - \vec{B} = \vec{A} + (-\vec{B}) \] \[ \vec{R} = \left(A - \frac{B}{2}\right)\hat{i} - \frac{\sqrt{3}B}{2}\hat{j} \] Step 4: Calculating the Angle Between \( \vec{A} \) and \( \vec{R} \):
The angle \(\beta\) that \( \vec{R} \) makes with the x-axis (direction of \( \vec{A} \)) is: \[ \tan \beta = \frac{|R_y|}{|R_x|} \] \[ \tan \beta = \frac{\frac{\sqrt{3}B}{2}}{\frac{2A - B}{2}} \] \[ \tan \beta = \frac{\sqrt{3}B}{2A - B} \] Step 5: Final Answer:
\[ \beta = \tan^{-1}\left( \frac{\sqrt{3} B}{2A - B} \right) \] This matches option (B).
Let \( \vec{a} = 2\hat{i} - 3\hat{j} + \hat{k} \), \( \vec{b} = 3\hat{i} + 2\hat{j} + 5\hat{k} \) and a vector \( \vec{c} \) be such that \[ (\vec{a} - \vec{c}) \times \vec{b} = -18\hat{i} - 3\hat{j} + 12\hat{k} \] and \[ \vec{a} \cdot \vec{c} = 3. \] If \( \vec{b} \times \vec{c} = \vec{d} \), then find \( |\vec{a} \cdot \vec{d}| \).
Let $ \vec{a} = \hat{i} + 2\hat{j} + \hat{k} $, $ \vec{b} = 3\hat{i} - 3\hat{j} + 3\hat{k} $, $ \vec{c} = 2\hat{i} - \hat{j} + 2\hat{k} $ and $ \vec{d} $ be a vector such that $ \vec{b} \times \vec{d} = \vec{c} \times \vec{d} $ and $ \vec{a} \cdot \vec{d} = 4 $. Then $ |\vec{a} \times \vec{d}|^2 $ is equal to _______
Consider two vectors $\vec{u} = 3\hat{i} - \hat{j}$ and $\vec{v} = 2\hat{i} + \hat{j} - \lambda \hat{k}$, $\lambda>0$. The angle between them is given by $\cos^{-1} \left( \frac{\sqrt{5}}{2\sqrt{7}} \right)$. Let $\vec{v} = \vec{v}_1 + \vec{v}_2$, where $\vec{v}_1$ is parallel to $\vec{u}$ and $\vec{v}_2$ is perpendicular to $\vec{u}$. Then the value $|\vec{v}_1|^2 + |\vec{v}_2|^2$ is equal to
The molar mass of the water insoluble product formed from the fusion of chromite ore \(FeCr_2\text{O}_4\) with \(Na_2\text{CO}_3\) in presence of \(O_2\) is ....... g mol\(^{-1}\):
Given below are some nitrogen containing compounds:
Each of them is treated with HCl separately. 1.0 g of the most basic compound will consume ...... mg of HCl.
(Given Molar mass in g mol\(^{-1}\): C = 12, H = 1, O = 16, Cl = 35.5.)
