Question:

Let \(\alpha,\beta,\gamma\ (0<\alpha,\beta,\gamma<\tfrac{\pi}{2})\) be the angles between non–zero vectors \(\vec a\) and \(\vec b\), \(\vec b\) and \(\vec c\), \(\vec c\) and \(\vec a\) respectively. If \(\theta\) is the angle that the vector \(\vec a\) makes with the plane containing \(\vec b\) and \(\vec c\), then:

Show Hint

Angle between a vector and a plane is best handled using the scalar triple product. Always square the expression to simplify radicals.
Updated On: Jan 30, 2026
  • \(\displaystyle \cos^2\theta=\cosec^2\beta\big(\cos^2\alpha+\cos^2\gamma-2\cos\alpha\cos\beta\cos\gamma\big)\)
  • \(\displaystyle \cos^2\theta=\sec^2\beta\big(\cos^2\alpha+\cos^2\gamma+2\cos\alpha\cos\beta\cos\gamma\big)\)
  • \(\displaystyle \sin^2\theta=\cosec^2\beta\big(\cos^2\alpha+\cos^2\gamma-2\cos\alpha\cos\beta\cos\gamma\big)\)
  • \(\displaystyle \sin^2\theta=\sec^2\beta\big(\cos^2\alpha+\cos^2\gamma+2\cos\alpha\cos\beta\cos\gamma\big)\)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

Step 1: Angle between a vector and a plane If \(\theta\) is the angle made by vector \(\vec a\) with the plane containing \(\vec b\) and \(\vec c\), then \[ \sin\theta=\frac{|\vec a\cdot(\vec b\times\vec c)|}{|\vec a|\,|\vec b\times\vec c|}. \] Step 2: Express magnitudes using angles \[ |\vec b\times\vec c|=|\vec b|\,|\vec c|\sin\beta. \] Also, \[ \vec a\cdot(\vec b\times\vec c) =|\vec a|\,|\vec b|\,|\vec c| \sqrt{\cos^2\alpha+\cos^2\gamma-2\cos\alpha\cos\beta\cos\gamma}. \] Step 3: Compute \(\sin^2\theta\) \[ \sin^2\theta =\frac{\cos^2\alpha+\cos^2\gamma-2\cos\alpha\cos\beta\cos\gamma}{\sin^2\beta} \] \[ =\cosec^2\beta\big(\cos^2\alpha+\cos^2\gamma-2\cos\alpha\cos\beta\cos\gamma\big). \] \[ \boxed{\sin^2\theta=\cosec^2\beta\big(\cos^2\alpha+\cos^2\gamma-2\cos\alpha\cos\beta\cos\gamma\big)} \]
Was this answer helpful?
0
0