Concept:
Reversing the sign of the position vector:
\[
\vec{r} \rightarrow -\vec{r}
\]
represents a change of origin or spatial inversion.
The effect on a physical quantity depends on how it is defined in terms of \(\vec{r}\).
Step 1: Effect on Different Physical Quantities
Velocity:
\[
\vec{v} = \frac{d\vec{r}}{dt}
\Rightarrow \vec{v} \rightarrow -\vec{v}
\]
Velocity changes sign, hence it is affected
.
Displacement:
Displacement is directly related to position vector.
\[
\vec{s} \rightarrow -\vec{s}
\]
Thus, displacement is affected
.
Acceleration:
\[
\vec{a} = \frac{d^2\vec{r}}{dt^2}
\Rightarrow \vec{a} \rightarrow -\vec{a}
\]
Acceleration also changes sign, hence it is affected
.
Torque:
Torque is defined as:
\[
\vec{\tau} = \vec{r} \times \vec{F}
\]
If \(\vec{r} \rightarrow -\vec{r}\), then:
\[
\vec{\tau} = (-\vec{r}) \times \vec{F} = -(\vec{r} \times \vec{F})
\]
However, under spatial inversion, force \(\vec{F}\) also reverses direction:
\[
\vec{F} \rightarrow -\vec{F}
\]
Thus,
\[
\vec{\tau} = (-\vec{r}) \times (-\vec{F}) = \vec{r} \times \vec{F}
\]
So, torque remains unchanged
.