Step 1: Evaluate \(\alpha\)
\[
(\vec b+\vec c)\cdot\big((\vec c+\vec a)\times(\vec a+\vec b)\big)
=[\vec b+\vec c,\ \vec c+\vec a,\ \vec a+\vec b]
\]
Using multilinearity of scalar triple product:
\[
=[\vec b,\vec c,\vec a]+[\vec c,\vec a,\vec b]
\]
Both are cyclic permutations of \([\vec a,\vec b,\vec c]\), hence:
\[
\alpha=2
\]
Step 2: Evaluate \(\beta\)
\[
(\vec a+\vec b)\cdot\big((\vec b+\vec c)\times(\vec a+\vec b+\vec c)\big)
=[\vec a+\vec b,\ \vec b+\vec c,\ \vec a+\vec b+\vec c]
\]
Expanding and retaining only non–zero terms:
\[
=[\vec a,\vec b,\vec c]+[\vec a,\vec c,\vec b]+[\vec b,\vec c,\vec a]
\]
Now,
\[
[\vec a,\vec c,\vec b]=- [\vec a,\vec b,\vec c],\qquad
[\vec b,\vec c,\vec a]=[\vec a,\vec b,\vec c]
\]
Thus,
\[
\beta=1
\]
Step 3: Final result
\[
\alpha+\beta=2+1=3
\]
\[
\boxed{3}
\]