
For \(Fe_3O_4,\  x=+\frac 83\)
Where, x is oxidation state of \(Fe\).
\(Fe_3O_4+8H++8e^−→3Fe+4H_2O\)
Charge required \(=\frac 83×F\)
\(=\frac {8F}{3}\)
\(≃3F\)
So, the answer is \(3F\).
Uniform magnetic fields of different strengths $ B_1 $ and $ B_2 $, both normal to the plane of the paper, exist as shown in the figure. A charged particle of mass $ m $ and charge $ q $, at the interface at an instant, moves into region 2 with velocity $ v $ and returns to the interface. It continues to move into region 1 and finally reaches the interface. What is the displacement of the particle during this movement along the interface?
Consider the velocity of the particle to be normal to the magnetic field and  $ B_2 > B_1 $.
For a given reaction \( R \rightarrow P \), \( t_{1/2} \) is related to \([A_0]\) as given in the table. Given: \( \log 2 = 0.30 \). Which of the following is true? 
 
| \([A]\) (mol/L) | \(t_{1/2}\) (min) | 
|---|---|
| 0.100 | 200 | 
| 0.025 | 100 | 
A. The order of the reaction is \( \frac{1}{2} \). 
B. If \( [A_0] \) is 1 M, then \( t_{1/2} \) is \( 200/\sqrt{10} \) min. 
C. The order of the reaction changes to 1 if the concentration of reactant changes from 0.100 M to 0.500 M. 
D. \( t_{1/2} \) is 800 min for \( [A_0] = 1.6 \) M. 
An electrochemical cell is a device that is used to create electrical energy through the chemical reactions which are involved in it. The electrical energy supplied to electrochemical cells is used to smooth the chemical reactions. In the electrochemical cell, the involved devices have the ability to convert the chemical energy to electrical energy or vice-versa.