1. Determine the number of terms in $(x + y)^{2n-3}$:
\[
\text{Number of terms} = 2n - 2
\]
2. Sum of all coefficients:
\[
\text{Sum of coefficients} = 2^{2n-3}
\]
3. Arithmetic mean of all coefficients:
\[
\text{Arithmetic mean} = \frac{2^{2n-3}}{2n-2} = 16
\]
\[
2^{2n-3} = 16(2n-2)
\]
\[
2^{2n-3} = 2^4(n-1)
\]
\[
2n-3 = 4 \implies n = 5
\]
4. Determine the point $P$:
\[
P(2n-1, n^2-4n) = P(9, 5)
\]
5. Calculate the distance from the line $x + y = 8$:
\[
\text{Distance} = \left| \frac{9 + 5 - 8}{\sqrt{2}} \right| = \frac{6}{\sqrt{2}} = 3\sqrt{2}
\]
Therefore, the correct answer is (4) $3\sqrt{2}$.