We need to find the distance of the point \(P(2n-1,\,n^2-4n)\) from the line \(x+y=8\), given that the arithmetic mean of all coefficients in the expansion \((x+y)^{2n-3}\) is \(16\).
For \((x+y)^m\), the sum of coefficients is \(2^m\) and the number of coefficients is \(m+1\). Hence the arithmetic mean of coefficients is
\[ \text{Mean}=\frac{2^m}{m+1}. \]The perpendicular distance from a point \((x_0,y_0)\) to a line \(ax+by+c=0\) is
\[ \text{dist}=\frac{|ax_0+by_0+c|}{\sqrt{a^2+b^2}}. \]Step 1: Set up the mean-of-coefficients condition with \(m=2n-3\):
\[ \frac{2^{\,2n-3}}{(2n-3)+1}=\frac{2^{\,2n-3}}{2n-2}=16=2^4. \]Step 2: Solve for \(n\):
\[ \frac{2^{\,2n-3}}{2n-2}=2^4 \;\;\Longrightarrow\;\; 2^{\,2n-3-4}=2^{\,2n-7}=2n-2. \]We need an integer \(n\ge2\) satisfying \(2^{\,2n-7}=2n-2\). Checking integers gives \(n=5\).
Step 3: Find the coordinates of \(P\) for \(n=5\):
\[ P(2n-1,\;n^2-4n)=(2\cdot5-1,\;5^2-4\cdot5)=(9,\;5). \]Step 4: Compute the distance from \(P(9,5)\) to the line \(x+y=8\):
\[ \text{Write the line as } x+y-8=0 \Rightarrow a=1,\;b=1,\;c=-8. \] \[ \text{dist}=\frac{|1\cdot9+1\cdot5-8|}{\sqrt{1^2+1^2}} =\frac{|14-8|}{\sqrt{2}} =\frac{6}{\sqrt{2}} =3\sqrt{2}. \]The required distance is \(3\sqrt{2}\) units.
\[ \left( \frac{1}{{}^{15}C_0} + \frac{1}{{}^{15}C_1} \right) \left( \frac{1}{{}^{15}C_1} + \frac{1}{{}^{15}C_2} \right) \cdots \left( \frac{1}{{}^{15}C_{12}} + \frac{1}{{}^{15}C_{13}} \right) = \frac{\alpha^{13}}{{}^{14}C_0 \, {}^{14}C_1 \cdots {}^{14}C_{12}} \]
Then \[ 30\alpha = \underline{\hspace{1cm}} \]
Which one of the following graphs accurately represents the plot of partial pressure of CS₂ vs its mole fraction in a mixture of acetone and CS₂ at constant temperature?

Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.