
We are given that ice and water are in equilibrium at 273.15 K and 1 atm pressure. This is the melting point of ice.
The Clausius-Clapeyron equation describes the relationship between pressure and temperature for phase transitions:
$$ \frac{dP}{dT} = \frac{\Delta H}{T \Delta V} $$
For the ice-water transition, $ \Delta H $ is the enthalpy of fusion (positive), and $ \Delta V = V_{\text{water}} - V_{\text{ice}} $. Since ice is less dense than water, $ V_{\text{ice}} > V_{\text{water}} $, so $ \Delta V < 0 $.
Therefore, $ \frac{dP}{dT} < 0 $. This means that an increase in pressure will lower the melting point of ice.
Since the temperature is kept constant at 273.15 K and the pressure is increased, the ice will start to melt to form water. This is because at the higher pressure, the temperature is above the new melting point.
Conclusion: The amount of ice will decrease.
Final Answer:
The final answer is $ \text{The amount of ice decreases.} $

One mole of an ideal gas expands isothermally and reversibly from $10 \mathrm{dm}^{3}$ to $20 \mathrm{dm}^{3}$ at $300 \mathrm{~K} . \Delta \mathrm{U}$, q and work done in the process respectively are : Given : $\mathrm{R}=8.3 \mathrm{JK}^{-1}$ and $\mathrm{mol}^{-1}$ In $10=2.3$ $\log 2=0.30$ $\log 3=0.48$
Let us consider a reversible reaction at temperature, T . In this reaction, both $\Delta \mathrm{H}$ and $\Delta \mathrm{S}$ were observed to have positive values. If the equilibrium temperature is $\mathrm{T}_{\mathrm{e}}$, then the reaction becomes spontaneous at:
For a given reaction \( R \rightarrow P \), \( t_{1/2} \) is related to \([A_0]\) as given in the table. Given: \( \log 2 = 0.30 \). Which of the following is true? 
 
| \([A]\) (mol/L) | \(t_{1/2}\) (min) | 
|---|---|
| 0.100 | 200 | 
| 0.025 | 100 | 
A. The order of the reaction is \( \frac{1}{2} \). 
B. If \( [A_0] \) is 1 M, then \( t_{1/2} \) is \( 200/\sqrt{10} \) min. 
C. The order of the reaction changes to 1 if the concentration of reactant changes from 0.100 M to 0.500 M. 
D. \( t_{1/2} \) is 800 min for \( [A_0] = 1.6 \) M. 
A parallel plate capacitor is filled equally (half) with two dielectrics of dielectric constant $ \epsilon_1 $ and $ \epsilon_2 $, as shown in figures. The distance between the plates is d and area of each plate is A. If capacitance in first configuration and second configuration are $ C_1 $ and $ C_2 $ respectively, then $ \frac{C_1}{C_2} $ is: 
A transparent block A having refractive index $ \mu_2 = 1.25 $ is surrounded by another medium of refractive index $ \mu_1 = 1.0 $ as shown in figure. A light ray is incident on the flat face of the block with incident angle $ \theta $ as shown in figure. What is the maximum value of $ \theta $ for which light suffers total internal reflection at the top surface of the block ?
Which of the following curves possibly represent one-dimensional motion of a particle?