We have two arithmetic progressions truncated to their first 2025 terms: \(A=\{1,6,11,16,\ldots\}\) and \(B=\{9,16,23,30,\ldots\}\). We need \(n(A\cup B)=|A|+|B|-|A\cap B|\).
Intersection of two arithmetic progressions can be found via simultaneous congruences. Also, for finite APs, the count of common terms equals the count of terms of the resulting AP lying within both ranges.
Step 1: Identify general terms and endpoints.
\[ A:\ a_k=1+5(k-1)=5k-4,\quad k=1,\ldots,2025\Rightarrow a_{\max}=5\cdot2025-4=10121. \] \[ B:\ b_m=9+7(m-1)=7m+2,\quad m=1,\ldots,2025\Rightarrow b_{\max}=7\cdot2025+2=14177. \] Thus \(|A|=|B|=2025\).
Step 2: Solve for common terms \(x\in A\cap B\).
\[ x\equiv 1\pmod{5}\quad(\text{since }x=5k-4),\qquad x\equiv 2\pmod{7}\quad(\text{since }x=7m+2). \] Let \(x=2+7t\). Then \(2+7t\equiv 1\pmod{5}\Rightarrow 7t\equiv -1\equiv 4\pmod{5}\). Since \(7\equiv 2\pmod{5}\), we get \(2t\equiv 4\pmod{5}\Rightarrow t\equiv 2\pmod{5}\). Hence \(t=2+5s\) and \[ x=2+7(2+5s)=16+35s,\quad s\in\mathbb{Z}. \]
Step 3: Count common terms within bounds.
\[ 16+35s\le \min(10121,14177)=10121 \Rightarrow s\le \frac{10121-16}{35}=\frac{10105}{35}=288+\frac{25}{35}. \] So \(s_{\max}=288\), and with \(s_{\min}=0\), number of common terms is \[ |A\cap B|=288-0+1=289. \]
\[ n(A\cup B)=|A|+|B|-|A\cap B|=2025+2025-289=3761. \]
Answer: \( \boxed{3761} \)