Step 1: Identify direction ratios and normal vector.
The direction ratios of the given line are obtained from \( \lambda (i + j + k) \), hence
\[
\vec{d} = \langle 1, 1, 1 \rangle
\]
The normal vector of the plane is
\[
\vec{n} = \langle 2, -1, 1 \rangle
\]
Step 2: Use the formula for angle between a line and a plane.
If \( \theta \) is the angle between the line and the plane, then
\[
\sin \theta = \frac{|\vec{d} \cdot \vec{n}|}{|\vec{d}|\,|\vec{n}|}
\]
Step 3: Compute dot product and magnitudes.
\[
\vec{d} \cdot \vec{n} = (1)(2) + (1)(-1) + (1)(1) = 2
\]
\[
|\vec{d}| = \sqrt{1^2 + 1^2 + 1^2} = \sqrt{3}, \quad
|\vec{n}| = \sqrt{2^2 + (-1)^2 + 1^2} = \sqrt{6}
\]
Step 4: Final calculation.
\[
\sin \theta = \frac{2}{\sqrt{3}\sqrt{6}} = \frac{\sqrt{2}}{3}
\]
\[
\theta = \sin^{-1}\!\left(\dfrac{\sqrt{2}}{3}\right)
\]