To determine if an ion has a noble gas configuration, we examine its electron configuration and compare it with that of a nearby noble gas:
- Sr²⁺ (\(Z = 38\)) loses two electrons, resulting in the electron configuration \([Kr]\), which matches the noble gas krypton.
- Cs⁺ (\(Z = 55\)) loses one electron, resulting in the electron configuration \([Xe]\), matching xenon.
- La³⁺ (\(Z = 57\)) loses three electrons, resulting in the electron configuration \([Xe]\), also matching xenon.
- Yb²⁺ (\(Z = 70\)) loses two electrons, resulting in the electron configuration \([Xe]\), matching xenon.
On the other hand:
- Pb²⁺ does not match any noble gas configuration due to its partially filled \(d\)-orbitals.
- Fe²⁺ does not match a noble gas configuration either, as it retains electrons in the \(d\)-orbital.
Thus, only *Sr²⁺, Cs⁺, La³⁺, and Yb²⁺ have noble gas configurations, totaling four ions.
The Correct answer is: 2
Match the LIST-I with LIST-II:
Choose the correct answer from the options given below :
The number of molecules/ions that show linear geometry among the following is _____. SO₂, BeCl₂, CO₂, N₃⁻, NO₂, F₂O, XeF₂, NO₂⁺, I₃⁻, O₃
If \[ \frac{dy}{dx} + 2y \sec^2 x = 2 \sec^2 x + 3 \tan x \cdot \sec^2 x \] and
and \( f(0) = \frac{5}{4} \), then the value of \[ 12 \left( y \left( \frac{\pi}{4} \right) - \frac{1}{e^2} \right) \] equals to: