To determine if an ion has a noble gas configuration, we examine its electron configuration and compare it with that of a nearby noble gas:
- Sr²⁺ (\(Z = 38\)) loses two electrons, resulting in the electron configuration \([Kr]\), which matches the noble gas krypton.
- Cs⁺ (\(Z = 55\)) loses one electron, resulting in the electron configuration \([Xe]\), matching xenon.
- La³⁺ (\(Z = 57\)) loses three electrons, resulting in the electron configuration \([Xe]\), also matching xenon.
- Yb²⁺ (\(Z = 70\)) loses two electrons, resulting in the electron configuration \([Xe]\), matching xenon.
On the other hand:
- Pb²⁺ does not match any noble gas configuration due to its partially filled \(d\)-orbitals.
- Fe²⁺ does not match a noble gas configuration either, as it retains electrons in the \(d\)-orbital.
Thus, only *Sr²⁺, Cs⁺, La³⁺, and Yb²⁺ have noble gas configurations, totaling four ions.
The Correct answer is: 2
Resonance in X$_2$Y can be represented as
The enthalpy of formation of X$_2$Y is 80 kJ mol$^{-1}$, and the magnitude of resonance energy of X$_2$Y is:
20 mL of sodium iodide solution gave 4.74 g silver iodide when treated with excess of silver nitrate solution. The molarity of the sodium iodide solution is _____ M. (Nearest Integer value) (Given : Na = 23, I = 127, Ag = 108, N = 14, O = 16 g mol$^{-1}$)