Step 1: Recall bond length fundamentals Bond length decreases with increasing bond order according to: \[ \text{Bond length} \propto \frac{1}{\text{Bond order}} \] Step 2: Determine bond orders using MOT Molecular orbital configuration for oxygen species: \[ \mathrm{O_2}: \sigma(1s)^2 \sigma^*(1s)^2 \sigma(2s)^2 \sigma^*(2s)^2 \sigma(2p_z)^2 \pi(2p_x)^2 = \pi(2p_y)^2 \pi^*(2p_x)^1 = \pi^*(2p_y)^1 \] Bond order calculation: \[ \text{B.O.} = \frac{\text{Bonding e}^- - \text{Antibonding e}^-}{2} \]
Step 3: Establish bond length order Since bond length $\propto \frac{1}{\text{B.O.}}$: \[ \mathrm{O_2^+} (2.5)<\mathrm{O_2} (2)<\mathrm{O_2^-} (1.5)<\mathrm{O_2^{2-}} (1) \] Step 4: Experimental validation Measured bond lengths:
$\mathrm{O_2^+}$: 112 pm (shortest)
$\mathrm{O_2}$: 121 pm
$\mathrm{O_2^-}$: 133 pm
$\mathrm{O_2^{2-}}$: 149 pm (longest)
Was this answer helpful?
0
0
Top Questions on Chemical bonding and molecular structure