Differentiating with respect to \( x \):
\[ g(x) = h(e^x) \times e^{h(x)} \]
\[ g'(x) = h'(e^x) \times e^{h(x)} \times h'(x) + e^{h(x)} \times h'(e^x) \times e^x \]
\[ g'(0) = h(1)e^{h(0)}h'(0) + e^{h(0)}h'(1) \]
\[ = 2 + 2 = 4 \]
Let $ y(x) $ be the solution of the differential equation $$ x^2 \frac{dy}{dx} + xy = x^2 + y^2, \quad x > \frac{1}{e}, $$ satisfying $ y(1) = 0 $. Then the value of $ 2 \cdot \frac{(y(e))^2}{y(e^2)} $ is ________.