Given:
\( f(3x + 2y,\ 2x - 5y) = 19x \)
\( f(x,\ 2x) = 27 \)
Assume that:
\( 3x + 2y = a \), and \( 2x - 5y = b \)
We are given that:
\( f(a,\ b) = 19x \) and \( f(x,\ 2x) = 27 \)
Now we match the arguments of \( f(a,\ b) \) with \( f(x,\ 2x) \):
Let \[ a = \frac{19}{9}x,\quad b = \frac{38}{9}x \]
Now confirm if this satisfies the transformation:
From \( 3x + 2y = \frac{19}{9}x \), solve for \( y \): \[ 3x + 2y = \frac{19}{9}x \Rightarrow 2y = \frac{19}{9}x - 3x = \frac{19 - 27}{9}x = -\frac{8}{9}x \Rightarrow y = -\frac{4}{9}x \]
Put this value of \( y \) into \( 2x - 5y \): \[ 2x - 5y = 2x - 5 \cdot \left( -\frac{4}{9}x \right) = 2x + \frac{20}{9}x = \frac{38}{9}x \]
So, the function becomes: \[ f\left( \frac{19}{9}x,\ \frac{38}{9}x \right) = 19x \] Let’s define \( u = \frac{19}{9}x \Rightarrow x = \frac{9}{19}u \)
Then: \[ f(u,\ 2u) = 19x = 19 \cdot \frac{9}{19}u = 9u \]
But we are told: \[ f(x,\ 2x) = 27 \] and from the general form above, \( f(x,\ 2x) = 9x \), so: \[ 9x = 27 \Rightarrow x = 3 \]
Therefore, the correct option is (A): 3.
When $10^{100}$ is divided by 7, the remainder is ?