If, \(x< r\)
\(f(x) =r\)
\(⇒ f(x) = f(f(x))\)
\(⇒r=f(r)\)
\(⇒r= 2r-r\)
\(⇒r=r\)
If, \(x≥r\)
\(f(x) = 2x-r\)
\(⇒f(x) = f(f(x))\)
\(⇒2x-r = f(2x-r)\)
\(⇒2x-r = 2(2x-r) - r\)
\(⇒2x-r = 4x-3r\)
\(⇒x=r\)
Hence, \(x≤ r\)
So, the correct option is (A): \(x≤ r\)