The correct answer is (D): \(4\)
\(f(x)=x^2+ax+b\)
\(g(x)=f(x+1)-f(x-1)\)
=\({(x+1)^2+a(x+1)+b}-{(x-1)^2+a(x-1)+b}\)
\(g(x)=4x+2a\)
\(g(20)=72\)
\(80+2a=72 ⇒ a=-4\)
\(∴ f(x)=x^2-4x+b\)
\(f(x)=(x-2)^2+b-4\)
When \(b≥4 f(x)≥0\) for all \(x\)
\(∴\) The minimum value of b is \(4\)