Question:

Let f(x)=x2+ax+bf(x)=x^2+ax+b and g(x)=f(x+1)f(x1)g(x)=f(x+1)-f(x-1). If f(x)0f(x)≥0 for all real xx, and g(20)=72g(20)=72, then the smallest possible value of bb is

Updated On: Sep 17, 2024
  • 1
  • 16
  • 0
  • 4
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

The correct answer is (D): 44

f(x)=x2+ax+bf(x)=x^2+ax+b

g(x)=f(x+1)f(x1)g(x)=f(x+1)-f(x-1)

=(x+1)2+a(x+1)+b(x1)2+a(x1)+b{(x+1)^2+a(x+1)+b}-{(x-1)^2+a(x-1)+b}

g(x)=4x+2ag(x)=4x+2a

g(20)=72g(20)=72

80+2a=72a=480+2a=72 ⇒ a=-4

f(x)=x24x+b∴ f(x)=x^2-4x+b

f(x)=(x2)2+b4f(x)=(x-2)^2+b-4

When b4f(x)0b≥4 f(x)≥0 for all xx

 The minimum value of b is 44

Was this answer helpful?
0
0