Question:

Let \(f(x)=x^2+ax+b\) and \(g(x)=f(x+1)-f(x-1)\). If \(f(x)≥0\) for all real \(x\), and \(g(20)=72\), then the smallest possible value of \(b\) is

Updated On: Sep 17, 2024
  • 1
  • 16
  • 0
  • 4
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

The correct answer is (D): \(4\)

\(f(x)=x^2+ax+b\)

\(g(x)=f(x+1)-f(x-1)\)

=\({(x+1)^2+a(x+1)+b}-{(x-1)^2+a(x-1)+b}\)

\(g(x)=4x+2a\)

\(g(20)=72\)

\(80+2a=72 ⇒ a=-4\)

\(∴ f(x)=x^2-4x+b\)

\(f(x)=(x-2)^2+b-4\)

When \(b≥4 f(x)≥0\) for all \(x\)

\(∴\) The minimum value of b is \(4\)

Was this answer helpful?
0
0

Questions Asked in CAT exam

View More Questions