The correct answer is (D): 444
f(x)=x2+ax+bf(x)=x^2+ax+bf(x)=x2+ax+b
g(x)=f(x+1)−f(x−1)g(x)=f(x+1)-f(x-1)g(x)=f(x+1)−f(x−1)
=(x+1)2+a(x+1)+b−(x−1)2+a(x−1)+b{(x+1)^2+a(x+1)+b}-{(x-1)^2+a(x-1)+b}(x+1)2+a(x+1)+b−(x−1)2+a(x−1)+b
g(x)=4x+2ag(x)=4x+2ag(x)=4x+2a
g(20)=72g(20)=72g(20)=72
80+2a=72⇒a=−480+2a=72 ⇒ a=-480+2a=72⇒a=−4
∴f(x)=x2−4x+b∴ f(x)=x^2-4x+b∴f(x)=x2−4x+b
f(x)=(x−2)2+b−4f(x)=(x-2)^2+b-4f(x)=(x−2)2+b−4
When b≥4f(x)≥0b≥4 f(x)≥0b≥4f(x)≥0 for all xxx
∴∴∴ The minimum value of b is 444