Start with the two equations:
**Equation 1:**
\[
2\sin^2\theta - \cos 2\theta = 0
\]
Use identity: \( \cos 2\theta = 1 - 2\sin^2\theta \), so:
\[
2\sin^2\theta - (1 - 2\sin^2\theta) = 0 \Rightarrow 2\sin^2\theta - 1 + 2\sin^2\theta = 0 \Rightarrow 4\sin^2\theta = 1 \Rightarrow \sin\theta = \pm\frac{1}{2}
\]
So from \( \sin\theta = \pm \frac{1}{2} \), in \( [0, 2\pi] \), we get 4 values of \( \theta \): \( \frac{\pi}{6}, \frac{5\pi}{6}, \frac{7\pi}{6}, \frac{11\pi}{6} \)
**Equation 2:**
\[
2\cos^2\theta - 3\sin\theta = 0
\Rightarrow 2(1 - \sin^2\theta) - 3\sin\theta = 0 \Rightarrow 2 - 2\sin^2\theta - 3\sin\theta = 0
\Rightarrow 2\sin^2\theta + 3\sin\theta - 2 = 0
\]
Let \( y = \sin\theta \), solve:
\[
2y^2 + 3y - 2 = 0 \Rightarrow y = \frac{-3 \pm \sqrt{9 + 16}}{4} = \frac{-3 \pm \sqrt{25}}{4} = \frac{-3 \pm 5}{4}
\Rightarrow y = \frac{1}{2},\ -2
\]
Only \( \sin\theta = \frac{1}{2} \) is valid (as \( \sin\theta \in [-1, 1] \)).
\[
\text{So from this, the possible values are } \frac{\pi}{6}, \frac{5\pi}{6} \in [0, \pi].
\text{Hence, there are 2 solutions in } [0, \pi] \Rightarrow Statement-II is true.
\]
Now check how many values are common in both equations in \( [0, 2\pi] \):
From Equation 1: \( \sin\theta = \pm \frac{1}{2} \Rightarrow \frac{\pi}{6}, \frac{5\pi}{6}, \frac{7\pi}{6}, \frac{11\pi}{6} \)
From Equation 2: \( \sin\theta = \frac{1}{2} \Rightarrow \frac{\pi}{6}, \frac{5\pi}{6} \)
**Common values:** \( \frac{\pi}{6}, \frac{5\pi}{6} \Rightarrow 2 \) values Statement-I is also true.
Hence, both Statement-I and Statement-II are true.