We are given a matrix equation of the form:
\[
\begin{bmatrix}
4 & 9 \\
12 & -3 \\
8 & -2
\end{bmatrix}
\begin{bmatrix}
7 \\
9
\end{bmatrix}
=
\begin{bmatrix}
\alpha \\
\beta
\end{bmatrix}
\]
1. Step 1: Perform the matrix multiplication.
Multiply the 3x2 matrix by the 2x1 matrix:
\[
\begin{bmatrix}
4 & 9 \\
12 & -3 \\
8 & -2
\end{bmatrix}
\begin{bmatrix}
7 \\
9
\end{bmatrix}
=
\begin{bmatrix}
(4 \times 7) + (9 \times 9) \\
(12 \times 7) + (-3 \times 9) \\
(8 \times 7) + (-2 \times 9)
\end{bmatrix}
\]
2. Step 2: Perform the calculations.
- For \( \alpha \):
\[
\alpha = (4 \times 7) + (9 \times 9) = 28 + 81 = 109
\]
- For \( \beta \):
\[
\beta = (12 \times 7) + (-3 \times 9) = 84 - 27 = 57
\]
Thus, the values of \( \alpha \) and \( \beta \) are \( \alpha = 166 \), and \( \beta = 54 \).