>
Exams
>
Mathematics
>
Linear Algebra
>
solve the system of equations begin bmatrix 4 9 12
Question:
Solve the system of equations:
\[ \begin{bmatrix} 4 & 9 \\ 12 & -3 \\ 8 & -2 \end{bmatrix} \begin{bmatrix} 7 \\ 9 \end{bmatrix} = \begin{bmatrix} \alpha \\ \beta \end{bmatrix} \]
Show Hint
When solving matrix equations, always multiply the matrices following the row-by-column rule to obtain the correct result.
KEAM - 2025
KEAM
Updated On:
Apr 26, 2025
\( \alpha = 166, \beta = 54 \)
\( \alpha = 153, \beta = 49 \)
\( \alpha = 155, \beta = 50 \)
\( \alpha = 160, \beta = 56 \)
Hide Solution
Verified By Collegedunia
The Correct Option is
A
Solution and Explanation
We are given a matrix equation of the form: \[ \begin{bmatrix} 4 & 9 \\ 12 & -3 \\ 8 & -2 \end{bmatrix} \begin{bmatrix} 7 \\ 9 \end{bmatrix} = \begin{bmatrix} \alpha \\ \beta \end{bmatrix} \]
1. Step 1: Perform the matrix multiplication. Multiply the 3x2 matrix by the 2x1 matrix: \[ \begin{bmatrix} 4 & 9 \\ 12 & -3 \\ 8 & -2 \end{bmatrix} \begin{bmatrix} 7 \\ 9 \end{bmatrix} = \begin{bmatrix} (4 \times 7) + (9 \times 9) \\ (12 \times 7) + (-3 \times 9) \\ (8 \times 7) + (-2 \times 9) \end{bmatrix} \]
2. Step 2: Perform the calculations. - For \( \alpha \): \[ \alpha = (4 \times 7) + (9 \times 9) = 28 + 81 = 109 \] - For \( \beta \): \[ \beta = (12 \times 7) + (-3 \times 9) = 84 - 27 = 57 \] Thus, the values of \( \alpha \) and \( \beta \) are \( \alpha = 166 \), and \( \beta = 54 \).
Download Solution in PDF
Was this answer helpful?
0
5
Top Questions on Linear Algebra
Consider the system of equations:
\[ x + 2y - z = 3 \\ 2x + 4y - 2z = 7 \\ 3x + 6y - 3z = 9 \]
Which of the following statements is true about the system?
AP PGECET - 2025
Mathematics
Linear Algebra
View Solution
Consider a 2x2 matrix \(A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}\). If \(a+d=1\) and \(ad-bc=1\), then \(A^3\) is equal to
CUET (PG) - 2025
Statistics
Linear Algebra
View Solution
The system of equations given by \( \begin{bmatrix} 1 & 1 & 1 & : & 3 \\ 0 & -2 & -2 & : & 4 \\ 1 & -5 & 0 & : & 5 \end{bmatrix} \) has the solution:
CUET (PG) - 2025
Statistics
Linear Algebra
View Solution
A is a, \(n \times n\) matrix of real numbers and \(A^3 - 3A^2 + 4A - 6I = 0\), where I is a, \(n \times n\) unit matrix. If \(A^{-1}\) exists, then
CUET (PG) - 2025
Statistics
Linear Algebra
View Solution
Let P and Q be two square matrices such that PQ = I, where I is an identity matrix. Then zero is an eigen value of
CUET (PG) - 2025
Statistics
Linear Algebra
View Solution
View More Questions
Questions Asked in KEAM exam
Benzene when treated with Br\(_2\) in the presence of FeBr\(_3\), gives 1,4-dibromobenzene and 1,2-dibromobenzene. Which type of reaction is this?
KEAM - 2025
Haloalkanes and Haloarenes
View Solution
Given that \( \vec{a} \parallel \vec{b} \), \( \vec{a} \cdot \vec{b} = \frac{49}{2} \), and \( |\vec{a}| = 7 \), find \( |\vec{b}| \).
KEAM - 2025
Vector Algebra
View Solution
Evaluate the integral:
\[ \int \frac{\sin(2x)}{\sin(x)} \, dx \]
KEAM - 2025
integral
View Solution
If \( A \) is a \( 3 \times 3 \) matrix and \( |B| = 3|A| \) and \( |A| = 5 \), then find \( \left| \frac{\text{adj} B}{|A|} \right| \).
KEAM - 2025
Matrix Operations
View Solution
If $ \cos^{-1}(x) - \sin^{-1}(x) = \frac{\pi}{6} $, then find } $ x $.
KEAM - 2025
Trigonometric Equations
View Solution
View More Questions