Solve the differential equation \[ (x + y) \, dy + (x - y) \, dx = 0, \quad \text{if} \quad y = 1 \text{ when } x = 1. \]
Step 1: Rearrange the terms of the equation: \[ \frac{dy}{dx} = \frac{-(x - y)}{x + y}. \]
Step 2: Use substitution, let \( v = x + y \), so that \( dv = dx + dy \).
Step 3: Substitute into the equation and solve for \( y \).
Step 4: Apply the initial condition to find the particular solution.
(b) Order of the differential equation: $ 5x^3 \frac{d^3y}{dx^3} - 3\left(\frac{dy}{dx}\right)^2 + \left(\frac{d^2y}{dx^2}\right)^4 + y = 0 $