Solve the differential equation \[ (x + y) \, dy + (x - y) \, dx = 0, \quad \text{if} \quad y = 1 \text{ when } x = 1. \]
Step 1: Rearrange the terms of the equation: \[ \frac{dy}{dx} = \frac{-(x - y)}{x + y}. \]
Step 2: Use substitution, let \( v = x + y \), so that \( dv = dx + dy \).
Step 3: Substitute into the equation and solve for \( y \).
Step 4: Apply the initial condition to find the particular solution.
Find the values of \( x, y, z \) if the matrix \( A \) satisfies the equation \( A^T A = I \), where
\[ A = \begin{bmatrix} 0 & 2y & z \\ x & y & -z \\ x & -y & z \end{bmatrix} \]