Question:

Solution of a differential equation  \((1+ y2)dx=(\tan^{-1}y - x)dy\) is :

Updated On: May 21, 2024
  • \(ye^{\tan^{-1}y }= e^{\tan^{-1}y}(\tan^{-1}y + 1) + C\)
  • \(ye^{\tan^{-1}y }= e^{\tan^{-1}y}(\tan^{-1}y - 1) + C\)
  • \(xe^{\tan^{-1}y }= e^{\tan^{-1}y}(\tan^{-1}y + 1) + C\)
  • \(xe^{\tan^{-1}y }= e^{\tan^{-1}y}(\tan^{-1}y - 1) + C\)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

The correct option is (C):\(xe^{\tan^{-1}y }= e^{\tan^{-1}y}(\tan^{-1}y - 1) + C\)
Was this answer helpful?
0
0