Show that the vectors \( 2\hat{i} - \hat{j} + \hat{k}, \hat{i} - 3\hat{j} - 5\hat{k}, 3\hat{i} - 4\hat{j} - 4\hat{k} \) form the vertices of a right-angled triangle.
Step 1: Find the magnitude of each vector: \[ |v_1| = \sqrt{(2)^2 + (-1)^2 + (1)^2}, \quad |v_2| = \sqrt{(1)^2 + (-3)^2 + (-5)^2}, \quad |v_3| = \sqrt{(3)^2 + (-4)^2 + (-4)^2}. \]
Step 2: Apply the Pythagorean theorem to check if the sum of squares of two vectors equals the square of the third vector.
Step 3: If the equation holds, the vectors form a right-angled triangle.
Mention the events related to the following historical dates:
\[\begin{array}{rl} \bullet & 321 \,\text{B.C.} \\ \bullet & 1829 \,\text{A.D.} \\ \bullet & 973 \,\text{A.D.} \\ \bullet & 1336 \,\text{A.D.} \\ \bullet & 1605 \,\text{A.D.} \\ \bullet & 1875 \,\text{A.D.} \\ \bullet & 1885 \,\text{A.D.} \\ \bullet & 1907 \,\text{A.D.} \\ \bullet & 1942 \,\text{A.D.} \\ \bullet & 1935 \,\text{A.D.} \end{array}\]