We are given the integral:
\[
I = \int_{-1}^{1} \frac{1+2x}{e^{-x} + e^x} \, dx
\]
First, recognize that \( e^{-x} + e^x = 2\cosh(x) \), where \( \cosh(x) \) is the hyperbolic cosine function. Thus, the integral becomes:
\[
I = \int_{-1}^{1} \frac{1+2x}{2\cosh(x)} \, dx
\]
Now, split the terms in the numerator:
\[
I = \frac{1}{2} \int_{-1}^{1} \frac{1}{\cosh(x)} \, dx + \int_{-1}^{1} \frac{x}{\cosh(x)} \, dx
\]
The first part of the integral, \( \frac{1}{\cosh(x)} \), is a standard integral, which gives:
\[
\int \frac{1}{\cosh(x)} \, dx = \tan^{-1}(\tanh(\frac{x}{2}))
\]
Evaluating from \(-1\) to \(1\):
\[
\int_{-1}^{1} \frac{1}{\cosh(x)} \, dx = 2 \tan^{-1} e
\]
The second part of the integral involves an odd function \( \frac{x}{\cosh(x)} \), and since we are integrating over a symmetric interval \([-1, 1]\), this part evaluates to zero:
\[
\int_{-1}^{1} \frac{x}{\cosh(x)} \, dx = 0
\]
Thus, the final answer is:
\[
I = 2 \left( \tan^{-1} e - \frac{\pi}{4} \right)
\]