Let \[ f(x)=\int \frac{7x^{10}+9x^8}{(1+x^2+2x^9)^2}\,dx \] and $f(1)=\frac14$. Given that 
and $B=\operatorname{adj}(\operatorname{adj}A)$, if $|B|=81$, find the value of $\alpha^2$ (where $\alpha\in\mathbb{R}$).
Step 1: Use property of adjoint.
For a $3\times3$ matrix, \[ |\operatorname{adj}(\operatorname{adj}A)|=|A|^{(3-1)^2}=|A|^4 \] Given $|B|=81$, \[ |A|^4=81 \Rightarrow |A|=3 \] Step 2: Evaluate $f(1)$.
\[ f'(x)=\frac{7x^{10}+9x^8}{(1+x^2+2x^9)^2} \] Let $u=1+x^2+2x^9$
\[ f(x)=-\frac{1}{u}+C \] Using $f(1)=\frac14$: \[ -\frac{1}{1+1+2}+C=\frac14 \Rightarrow C=\frac12 \] Step 3: Compute determinant of $A$.
\[ =0-0+1\left(4\cdot\frac14-\alpha^2\cdot\frac14\right) \] \[ =1-\frac{\alpha^2}{4} \] Step 4: Use $|A|=3$.
\[ 1-\frac{\alpha^2}{4}=3 \Rightarrow \alpha^2=8 \] Final conclusion.
The value of $\alpha^2$ is 8.
Let \[ f(x)=\int \frac{7x^{10}+9x^8}{(1+x^2+2x^9)^2}\,dx \] and $f(1)=\frac14$. Given that 
Which one of the following graphs accurately represents the plot of partial pressure of CS₂ vs its mole fraction in a mixture of acetone and CS₂ at constant temperature?

Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.