Question:

sinx3+4cos2xdx=∫\frac{sinx}{3+4cos^2x}dx=

Updated On: Apr 26, 2024
  • 123tan1(2cosx3)+C-\frac{1}{2\sqrt 3}tan^{-1}(\frac{2cosx}{\sqrt 3})+C
  • 13tan1(cosx3)+C\frac{1}{\sqrt 3}tan^{-1}(\frac{cosx}{3})+C
  • 123tan1(cosx3)+C\frac{1}{2\sqrt 3}tan^{-1}(\frac{cosx}{3})+C
  • 13tan1(2cosx3)+C-\frac{1}{\sqrt 3}tan^{-1}(\frac{2cosx}{3})+C
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

The correct answer is Option (A) : 123tan1(2cosx3)+C-\frac{1}{2\sqrt 3}tan^{-1}(\frac{2cosx}{\sqrt 3})+C
Was this answer helpful?
0
0