Sides AB and BC and median AD of a triangle ABC are respectively proportional to sides PQ and QR and median PM of ∆PQR (see the given figure). Show that ∆ABC ∼ ∆PQR.
Given: Sides AB and BC and median AD of a triangle ABC are respectively proportional to sides PQ and QR and median PM of ∆PQR
\(\Rightarrow \frac{AB}{PQ}=\frac{BC}{QR}=\frac{AD}{PM}\)
To Prove: ∆ABC ∼ ∆PQR
Proof: The median divides the opposite side.
∴ BD=\(\frac{BC}{2}\) and QM=\(\frac{QR}{2}\)
Given that,
\(\frac{AB}{PQ}=\frac{BC}{QR}=\frac{AD}{PM}\)
⇒ \(\frac{AB}{PQ}=\frac{\frac{1}{2}BC}{\frac{1}{2}QR}=\frac{AD}{PM}\)
⇒ \(\frac{AP}{PQ}=\frac{BD}{QM}=\frac{AD}{PM}\)
In ∆ABD and ∆PQM,
\(\frac{AB}{PQ}=\frac{BD}{QM}=\frac{AD}{PM}\)
∴ ∆ABD ∼ ∆PQM (By SSS similarity criterion)
⇒ \(\angle\)ABD = \(\angle\)PQM (Corresponding angles of similar triangles)
In ∆ABC and ∆PQR,
⇒ \(\angle\)ABD = \(\angle\)PQM (Proved above)
⇒ \(\frac{AB}{PQ}=\frac{BC}{QR}\)
∴ ∆ABC ∼ ∆PQR (By SAS similarity criterion)
Hence Proved
In the adjoining figure, \( AP = 1 \, \text{cm}, \ BP = 2 \, \text{cm}, \ AQ = 1.5 \, \text{cm}, \ AC = 4.5 \, \text{cm} \) Prove that \( \triangle APQ \sim \triangle ABC \).
Hence, find the length of \( PQ \), if \( BC = 3.6 \, \text{cm} \).
‘दीवार खड़ी करना’ मुहावरे का वाक्य में इस प्रकार प्रयोग करें कि अर्थ स्पष्ट हो जाए।
Select from the following a statement which is not true about the burning of magnesium ribbon in air:
Analyze the significant changes in printing technology during 19th century in the world.
निम्नलिखित विषय पर संकेत बिंदुओं के आधार पर लगभग 120 शब्दों में एक अनुच्छेद लिखिए |
डिजिटल इंडिया
संकेत बिंदु -
डिजिटल इंडिया क्या है
डिजिटल होने के लाभ
सरकार द्वारा उठाए गए कदम