Sides AB and BC and median AD of a triangle ABC are respectively proportional to sides PQ and QR and median PM of ∆PQR (see the given figure). Show that ∆ABC ∼ ∆PQR.
Given: Sides AB and BC and median AD of a triangle ABC are respectively proportional to sides PQ and QR and median PM of ∆PQR
\(\Rightarrow \frac{AB}{PQ}=\frac{BC}{QR}=\frac{AD}{PM}\)
To Prove: ∆ABC ∼ ∆PQR
Proof: The median divides the opposite side.
∴ BD=\(\frac{BC}{2}\) and QM=\(\frac{QR}{2}\)
Given that,
\(\frac{AB}{PQ}=\frac{BC}{QR}=\frac{AD}{PM}\)
⇒ \(\frac{AB}{PQ}=\frac{\frac{1}{2}BC}{\frac{1}{2}QR}=\frac{AD}{PM}\)
⇒ \(\frac{AP}{PQ}=\frac{BD}{QM}=\frac{AD}{PM}\)
In ∆ABD and ∆PQM,
\(\frac{AB}{PQ}=\frac{BD}{QM}=\frac{AD}{PM}\)
∴ ∆ABD ∼ ∆PQM (By SSS similarity criterion)
⇒ \(\angle\)ABD = \(\angle\)PQM (Corresponding angles of similar triangles)
In ∆ABC and ∆PQR,
⇒ \(\angle\)ABD = \(\angle\)PQM (Proved above)
⇒ \(\frac{AB}{PQ}=\frac{BC}{QR}\)
∴ ∆ABC ∼ ∆PQR (By SAS similarity criterion)
Hence Proved
"जितेंद्र नार्गे जैसे गाइड के साथ किसी भी पर्यटन स्थल का भ्रमण अधिक आनंददायक और यादगार हो सकता है।" इस कथन के समर्थन में 'साना साना हाथ जोड़ि .......' पाठ के आधार पर तर्कसंगत उत्तर दीजिए।
आप अदिति / आदित्य हैं। आपकी दादीजी को खेलों में अत्यधिक रुचि है। ओलंपिक खेल-2024 में भारत के प्रदर्शन के बारे में जानकारी देते हुए लगभग 100 शब्दों में पत्र लिखिए।
There is a circular park of diameter 65 m as shown in the following figure, where AB is a diameter. An entry gate is to be constructed at a point P on the boundary of the park such that distance of P from A is 35 m more than the distance of P from B. Find distance of point P from A and B respectively.