Gauss’s Law states that the total electric flux through a closed surface is equal to the net charge enclosed divided by the permittivity of free space:
\[ \Phi_E = \oint \vec{E} \cdot d\vec{A} = \frac{q_{\text{in}}}{\varepsilon_0} \]
Consider a point charge \( q \) placed at the center of a spherical Gaussian surface of radius \( r \).
Due to symmetry, the electric field \( E \) is constant in magnitude and radially outward over the surface:
\[ \oint \vec{E} \cdot d\vec{A} = E \oint dA = E \cdot 4\pi r^2 \] \[ \Rightarrow E \cdot 4\pi r^2 = \frac{q}{\varepsilon_0} \Rightarrow E = \frac{1}{4\pi\varepsilon_0} \cdot \frac{q}{r^2} \]
This is exactly the expression for electric field due to a point charge from Coulomb’s law, hence Gauss’s law is consistent with it.
Let total charge on the shell be \( q \), radius of shell = \( r \), and the point of observation be at a distance \( y \) from the center.
Use a spherical Gaussian surface of radius \( y \). Enclosed charge = \( q \)
\[ \oint \vec{E} \cdot d\vec{A} = E \cdot 4\pi y^2 = \frac{q}{\varepsilon_0} \Rightarrow E = \frac{1}{4\pi\varepsilon_0} \cdot \frac{q}{y^2} \]
This means the shell behaves like a point charge concentrated at its center.
Now, the Gaussian surface lies inside the shell. Enclosed charge = 0
\[ \oint \vec{E} \cdot d\vec{A} = E \cdot 4\pi y^2 = 0 \Rightarrow E = 0 \]
Hence, no electric field exists inside a uniformly charged spherical shell.
The electric field \( E \) due to a uniformly charged spherical shell is given by:
\[ E = \begin{cases} \frac{1}{4\pi\varepsilon_0} \cdot \frac{q}{y^2}, & \text{for } y > r \\ 0, & \text{for } y < r \end{cases} \]
A ladder of fixed length \( h \) is to be placed along the wall such that it is free to move along the height of the wall.
Based upon the above information, answer the following questions:
(i)} Express the distance \( y \) between the wall and foot of the ladder in terms of \( h \) and height \( x \) on the wall at a certain instant. Also, write an expression in terms of \( h \) and \( x \) for the area \( A \) of the right triangle, as seen from the side by an observer.
निम्नलिखित गद्यांश की सप्रसंग व्याख्या कीजिए :
‘‘पुर्ज़े खोलकर फिर ठीक करना उतना कठिन काम नहीं है, लोग सीखते भी हैं, सिखाते भी हैं, अनाड़ी के हाथ में चाहे घड़ी मत दो पर जो घड़ीसाज़ी का इम्तहान पास कर आया है उसे तो देखने दो । साथ ही यह भी समझा दो कि आपको स्वयं घड़ी देखना, साफ़ करना और सुधारना आता है कि नहीं । हमें तो धोखा होता है कि परदादा की घड़ी जेब में डाले फिरते हो, वह बंद हो गई है, तुम्हें न चाबी देना आता है न पुर्ज़े सुधारना तो भी दूसरों को हाथ नहीं लगाने देते इत्यादि ।’’