Step 1: Write the characteristic equation.
For the given ODE:
\[
\frac{d^2y}{dx^2} - \frac{dy}{dx} - 2y = 0
\]
Assume solution of form \(y=e^{mx}\). Substituting:
\[
m^2 - m - 2 = 0
\]
\[
(m-2)(m+1)=0 \Rightarrow m=2, \, m=-1
\]
Step 2: General solution.
\[
y(x) = C_1 e^{2x} + C_2 e^{-x}
\]
Step 3: Apply initial conditions.
At \(x=0\), \(y(0)=2\):
\[
y(0) = C_1 e^0 + C_2 e^0 = C_1 + C_2 = 2 \Rightarrow (1)
\]
Now derivative:
\[
\frac{dy}{dx} = 2C_1 e^{2x} - C_2 e^{-x}
\]
At \(x=0\), \(\frac{dy}{dx}=1\):
\[
2C_1 - C_2 = 1 \Rightarrow (2)
\]
Step 4: Solve for constants.
From (1): \(C_2 = 2 - C_1\). Substitute into (2):
\[
2C_1 - (2-C_1) = 1 \Rightarrow 2C_1 - 2 + C_1 = 1
\]
\[
3C_1 = 3 \Rightarrow C_1 = 1
\]
\[
C_2 = 2 - 1 = 1
\]
Step 5: Final solution.
\[
y(x) = e^{2x} + e^{-x}
\]
Step 6: Evaluate at \(x=1\).
\[
y(1) = e^{2} + e^{-1} = 7.389 + 0.368 = 7.757
\]
Oops! Let’s check again carefully. (We must recalc because I typed wrong in Final Answer earlier.)
At \(x=1\):
\[
y(1) = e^{2} + e^{-1}
\]
\[
= 7.389 + 0.368 = 7.757
\]
So final result is:
\[
y(1) = 7.757 \, (\text{rounded to three decimals})
\]
Final Answer:
\[
\boxed{7.757}
\]