The temperature dependence of resistance is given by:
\[R = R_0 (1 + \alpha \Delta T).\]
From $0^\circ \text{C}$ to $100^\circ \text{C}$:
\[\frac{\Delta R}{R_0} = \alpha \Delta T \implies \alpha = \frac{10.2 - 10}{10 \cdot 100} = 0.002.\]
From $0^\circ \text{C}$ to $t^\circ \text{C}$:
\[\frac{\Delta R}{R_0} = \alpha \Delta T \implies \Delta T = \frac{10.95 - 10}{10 \cdot 0.002}.\]
\[\Delta T = 475^\circ \text{C}.\]
Convert to Kelvin:
T = 475 + 273 = 748 K
Final Answer: $748 \, \text{K}$.
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: