The temperature dependence of resistance is given by:
\[R = R_0 (1 + \alpha \Delta T).\]
From $0^\circ \text{C}$ to $100^\circ \text{C}$:
\[\frac{\Delta R}{R_0} = \alpha \Delta T \implies \alpha = \frac{10.2 - 10}{10 \cdot 100} = 0.002.\]
From $0^\circ \text{C}$ to $t^\circ \text{C}$:
\[\frac{\Delta R}{R_0} = \alpha \Delta T \implies \Delta T = \frac{10.95 - 10}{10 \cdot 0.002}.\]
\[\Delta T = 475^\circ \text{C}.\]
Convert to Kelvin:
T = 475 + 273 = 748 K
Final Answer: $748 \, \text{K}$.
A battery of emf \( E \) and internal resistance \( r \) is connected to a rheostat. When a current of 2A is drawn from the battery, the potential difference across the rheostat is 5V. The potential difference becomes 4V when a current of 4A is drawn from the battery. Calculate the value of \( E \) and \( r \).
The motion of an airplane is represented by the velocity-time graph as shown below. The distance covered by the airplane in the first 30.5 seconds is km.
The least acidic compound, among the following is
Choose the correct set of reagents for the following conversion: