The temperature dependence of resistance is given by:
\[R = R_0 (1 + \alpha \Delta T).\]
From $0^\circ \text{C}$ to $100^\circ \text{C}$:
\[\frac{\Delta R}{R_0} = \alpha \Delta T \implies \alpha = \frac{10.2 - 10}{10 \cdot 100} = 0.002.\]
From $0^\circ \text{C}$ to $t^\circ \text{C}$:
\[\frac{\Delta R}{R_0} = \alpha \Delta T \implies \Delta T = \frac{10.95 - 10}{10 \cdot 0.002}.\]
\[\Delta T = 475^\circ \text{C}.\]
Convert to Kelvin:
T = 475 + 273 = 748 K
Final Answer: $748 \, \text{K}$.
Given below are two statements. One is labelled as Assertion (A) and the other is labelled as Reason (R):
Assertion (A): In an insulated container, a gas is adiabatically shrunk to half of its initial volume. The temperature of the gas decreases.
Reason (R): Free expansion of an ideal gas is an irreversible and an adiabatic process.
In the light of the above statements, choose the correct answer from the options given below: