Rate law for a reaction between $A$ and $B$ is given by $\mathrm{R}=\mathrm{k}[\mathrm{A}]^{\mathrm{n}}[\mathrm{B}]^{\mathrm{m}}$. If concentration of A is doubled and concentration of B is halved from their initial value, the ratio of new rate of reaction to the initial rate of reaction $\left(\frac{\mathrm{r}_{2}}{\mathrm{r}_{1}}\right)$ is
To solve the problem, we need to understand how changes in the concentrations of reactants affect the rate of a reaction as per the given rate law.
The given rate law is: \(\mathrm{R} = \mathrm{k}[\mathrm{A}]^{\mathrm{n}}[\mathrm{B}]^{\mathrm{m}}\).
Initially, the rate of reaction (\(\mathrm{r}_1\)) is given by:
\(\mathrm{r}_1 = \mathrm{k}[\mathrm{A}]^{\mathrm{n}}[\mathrm{B}]^{\mathrm{m}}\)
According to the question, the concentration of \(A\) is doubled, and the concentration of \(B\) is halved. Thus, the new concentrations are \([A]' = 2[A]\) and \([B]' = \frac{1}{2}[B]\).
The new rate of reaction (\(\mathrm{r}_2\)) is then:
\(\mathrm{r}_2 = \mathrm{k}(2[\mathrm{A}])^{\mathrm{n}}\left(\frac{1}{2}[\mathrm{B}]\right)^{\mathrm{m}}\)
Simplifying \(\mathrm{r}_2\):
\(\mathrm{r}_2 = \mathrm{k} \cdot 2^{\mathrm{n}} [\mathrm{A}]^{\mathrm{n}} \cdot \left(\frac{1}{2}\right)^{\mathrm{m}} [\mathrm{B}]^{\mathrm{m}}\)
Rewriting it, we get:
\(\mathrm{r}_2 = \mathrm{k} \cdot 2^{\mathrm{n}} \cdot \frac{1}{2^{\mathrm{m}}} \cdot [\mathrm{A}]^{\mathrm{n}} [\mathrm{B}]^{\mathrm{m}}\)
\(\mathrm{r}_2 = \mathrm{k} \cdot 2^{\mathrm{n}-\mathrm{m}} \cdot [\mathrm{A}]^{\mathrm{n}} [\mathrm{B}]^{\mathrm{m}}\)
Thus, the ratio of the new rate of reaction to the initial rate of reaction is:
\(\frac{\mathrm{r}_2}{\mathrm{r}_1} = \frac{\mathrm{k} \cdot 2^{\mathrm{n}-\mathrm{m}} \cdot [\mathrm{A}]^{\mathrm{n}} [\mathrm{B}]^{\mathrm{m}}}{\mathrm{k} \cdot [\mathrm{A}]^{\mathrm{n}} [\mathrm{B}]^{\mathrm{m}}}\)
Upon canceling common terms, this reduces to:
\(\frac{\mathrm{r}_2}{\mathrm{r}_1} = 2^{\mathrm{n}-\mathrm{m}}\)
Therefore, the correct option is: \(2^{\mathrm{n}-\mathrm{m}}\).
For $\mathrm{A}_{2}+\mathrm{B}_{2} \rightleftharpoons 2 \mathrm{AB}$ $\mathrm{E}_{\mathrm{a}}$ for forward and backward reaction are 180 and $200 \mathrm{~kJ} \mathrm{~mol}^{-1}$ respectively. If catalyst lowers $\mathrm{E}_{\mathrm{a}}$ for both reaction by $100 \mathrm{~kJ} \mathrm{~mol}^{-1}$. Which of the following statement is correct?
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is:
Two blocks of masses \( m \) and \( M \), \( (M > m) \), are placed on a frictionless table as shown in figure. A massless spring with spring constant \( k \) is attached with the lower block. If the system is slightly displaced and released then \( \mu = \) coefficient of friction between the two blocks.
(A) The time period of small oscillation of the two blocks is \( T = 2\pi \sqrt{\dfrac{(m + M)}{k}} \)
(B) The acceleration of the blocks is \( a = \dfrac{kx}{M + m} \)
(\( x = \) displacement of the blocks from the mean position)
(C) The magnitude of the frictional force on the upper block is \( \dfrac{m\mu |x|}{M + m} \)
(D) The maximum amplitude of the upper block, if it does not slip, is \( \dfrac{\mu (M + m) g}{k} \)
(E) Maximum frictional force can be \( \mu (M + m) g \)
Choose the correct answer from the options given below:
Let \( f : \mathbb{R} \to \mathbb{R} \) be a twice differentiable function such that \[ (\sin x \cos y)(f(2x + 2y) - f(2x - 2y)) = (\cos x \sin y)(f(2x + 2y) + f(2x - 2y)), \] for all \( x, y \in \mathbb{R}. \)
If \( f'(0) = \frac{1}{2} \), then the value of \( 24f''\left( \frac{5\pi}{3} \right) \) is: