Rate law for a reaction between $A$ and $B$ is given by $\mathrm{R}=\mathrm{k}[\mathrm{A}]^{\mathrm{n}}[\mathrm{B}]^{\mathrm{m}}$. If concentration of A is doubled and concentration of B is halved from their initial value, the ratio of new rate of reaction to the initial rate of reaction $\left(\frac{\mathrm{r}_{2}}{\mathrm{r}_{1}}\right)$ is
To solve the problem, we need to understand how changes in the concentrations of reactants affect the rate of a reaction as per the given rate law.
The given rate law is: \(\mathrm{R} = \mathrm{k}[\mathrm{A}]^{\mathrm{n}}[\mathrm{B}]^{\mathrm{m}}\).
Initially, the rate of reaction (\(\mathrm{r}_1\)) is given by:
\(\mathrm{r}_1 = \mathrm{k}[\mathrm{A}]^{\mathrm{n}}[\mathrm{B}]^{\mathrm{m}}\)
According to the question, the concentration of \(A\) is doubled, and the concentration of \(B\) is halved. Thus, the new concentrations are \([A]' = 2[A]\) and \([B]' = \frac{1}{2}[B]\).
The new rate of reaction (\(\mathrm{r}_2\)) is then:
\(\mathrm{r}_2 = \mathrm{k}(2[\mathrm{A}])^{\mathrm{n}}\left(\frac{1}{2}[\mathrm{B}]\right)^{\mathrm{m}}\)
Simplifying \(\mathrm{r}_2\):
\(\mathrm{r}_2 = \mathrm{k} \cdot 2^{\mathrm{n}} [\mathrm{A}]^{\mathrm{n}} \cdot \left(\frac{1}{2}\right)^{\mathrm{m}} [\mathrm{B}]^{\mathrm{m}}\)
Rewriting it, we get:
\(\mathrm{r}_2 = \mathrm{k} \cdot 2^{\mathrm{n}} \cdot \frac{1}{2^{\mathrm{m}}} \cdot [\mathrm{A}]^{\mathrm{n}} [\mathrm{B}]^{\mathrm{m}}\)
\(\mathrm{r}_2 = \mathrm{k} \cdot 2^{\mathrm{n}-\mathrm{m}} \cdot [\mathrm{A}]^{\mathrm{n}} [\mathrm{B}]^{\mathrm{m}}\)
Thus, the ratio of the new rate of reaction to the initial rate of reaction is:
\(\frac{\mathrm{r}_2}{\mathrm{r}_1} = \frac{\mathrm{k} \cdot 2^{\mathrm{n}-\mathrm{m}} \cdot [\mathrm{A}]^{\mathrm{n}} [\mathrm{B}]^{\mathrm{m}}}{\mathrm{k} \cdot [\mathrm{A}]^{\mathrm{n}} [\mathrm{B}]^{\mathrm{m}}}\)
Upon canceling common terms, this reduces to:
\(\frac{\mathrm{r}_2}{\mathrm{r}_1} = 2^{\mathrm{n}-\mathrm{m}}\)
Therefore, the correct option is: \(2^{\mathrm{n}-\mathrm{m}}\).
Consider the following compounds. Arrange these compounds in a n increasing order of reactivity with nitrating mixture. The correct order is : 
Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.