Rate law for a reaction between $A$ and $B$ is given by $\mathrm{R}=\mathrm{k}[\mathrm{A}]^{\mathrm{n}}[\mathrm{B}]^{\mathrm{m}}$. If concentration of A is doubled and concentration of B is halved from their initial value, the ratio of new rate of reaction to the initial rate of reaction $\left(\frac{\mathrm{r}_{2}}{\mathrm{r}_{1}}\right)$ is
The rate of a reaction:
A + B −→ product
is given below as a function of different initial concentrations of A and B.
Experiment | \([A]\) (mol L\(^{-1}\)) | \([B]\) (mol L\(^{-1}\)) | Initial Rate (mol L\(^{-1}\) min\(^{-1}\)) |
---|---|---|---|
1 | 0.01 | 0.01 | \(5 \times 10^{-3}\) |
2 | 0.02 | 0.01 | \(1 \times 10^{-2}\) |
3 | 0.01 | 0.02 | \(5 \times 10^{-3}\) |
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: