For a first-order reaction, the time required for half-life is given by the equation:
\[
t_{1/2} = \frac{0.693}{K}
\]
where \(K\) is the rate constant, which can be written as:
\[
K = Ae^{-\frac{E_a}{RT}}
\]
Substituting the given values:
\[
K = 10^{20} \times e^{-\frac{191.48 \times 10^3}{8.314 \times 1000}}
= 10^{20} \times e^{-23.031}
= 10^{20} \times e^{-\ln(10^{10})}
= 10^{20} \times 10^{-10}
= 10^{10} \, \text{sec}^{-1}
\]
Thus, the half-life becomes:
\[
t_{1/2} = \frac{0.693}{10^{10}} = 6.93 \times 10^{-11} \, \text{sec}
= 69.3 \times 10^{-12} \, \text{sec}
\]
\[
\Rightarrow t_{1/2} = 69 \, \text{picoseconds}
\]