For an elementary reaction, the rate of reaction is proportional to the concentrations of the reactants. Specifically, for a reaction where the stoichiometric coefficients are 1 for both A and B, the rate law can be expressed as: \[ \text{Rate} = k[A][B] \] Here, \( k \) is the rate constant, and \( [A] \) and \( [B] \) are the concentrations of reactants A and B. Now, when the volume of the reaction mixture is reduced to \( \frac{1}{3} \) of its original volume, the concentration of the reactants will increase by a factor of 3, as concentration is inversely proportional to volume. Since the rate is directly proportional to the product of the concentrations of A and B, the reaction rate will increase by: \[ \text{New rate} = k(3[A])(3[B]) = 9 \times (\text{Original rate}) \] Therefore, the reaction rate will become 9 times the original rate. The value of \( x \) is 9.
For a chemical reaction, half-life period \(t_{1/2}\) is 10 minutes. How much reactant will be left after 20 minutes if one starts with 100 moles of reactant and the order of the reaction is:
Match List - I with List - II:
List - I:
(A) Electric field inside (distance \( r > 0 \) from center) of a uniformly charged spherical shell with surface charge density \( \sigma \), and radius \( R \).
(B) Electric field at distance \( r > 0 \) from a uniformly charged infinite plane sheet with surface charge density \( \sigma \).
(C) Electric field outside (distance \( r > 0 \) from center) of a uniformly charged spherical shell with surface charge density \( \sigma \), and radius \( R \).
(D) Electric field between two oppositely charged infinite plane parallel sheets with uniform surface charge density \( \sigma \).
List - II:
(I) \( \frac{\sigma}{\epsilon_0} \)
(II) \( \frac{\sigma}{2\epsilon_0} \)
(III) 0
(IV) \( \frac{\sigma}{\epsilon_0 r^2} \) Choose the correct answer from the options given below:
Consider the following statements:
A. Surface tension arises due to extra energy of the molecules at the interior as compared to the molecules at the surface of a liquid.
B. As the temperature of liquid rises, the coefficient of viscosity increases.
C. As the temperature of gas increases, the coefficient of viscosity increases.
D. The onset of turbulence is determined by Reynolds number.
E. In a steady flow, two streamlines never intersect.
Choose the correct answer from the options given below: