For an elementary reaction, the rate of reaction is proportional to the concentrations of the reactants. Specifically, for a reaction where the stoichiometric coefficients are 1 for both A and B, the rate law can be expressed as: \[ \text{Rate} = k[A][B] \] Here, \( k \) is the rate constant, and \( [A] \) and \( [B] \) are the concentrations of reactants A and B. Now, when the volume of the reaction mixture is reduced to \( \frac{1}{3} \) of its original volume, the concentration of the reactants will increase by a factor of 3, as concentration is inversely proportional to volume. Since the rate is directly proportional to the product of the concentrations of A and B, the reaction rate will increase by: \[ \text{New rate} = k(3[A])(3[B]) = 9 \times (\text{Original rate}) \] Therefore, the reaction rate will become 9 times the original rate. The value of \( x \) is 9.
The rate of a reaction:
A + B −→ product
is given below as a function of different initial concentrations of A and B.
Experiment | \([A]\) (mol L\(^{-1}\)) | \([B]\) (mol L\(^{-1}\)) | Initial Rate (mol L\(^{-1}\) min\(^{-1}\)) |
---|---|---|---|
1 | 0.01 | 0.01 | \(5 \times 10^{-3}\) |
2 | 0.02 | 0.01 | \(1 \times 10^{-2}\) |
3 | 0.01 | 0.02 | \(5 \times 10^{-3}\) |