Given that,
\(a = 5\), \(d = 1.75\) and \(a_n = 20.75\).
\(n = ?\)
\(a_n = a + (n − 1) d\)
\(20.75 = 5 + (n-1)1.75\)
\(15.75 = (n-1)1.75\)
\(n-1 = \frac {15.75}{1.75}\)
\(n-1 = \frac {1575}{175}\)
\(n-1 = \frac {63}{7}\)
\(n − 1 = 9\)
\(n = 10\)
Hence, n is 10.