Let\(I=\int_0^{\pi/2}\log\sinx\,dx\).Usingthepropertyofdefiniteintegrals:
\[
\int_0^af(x)\,dx=\int_0^af(a-x)\,dx,
\]
wehave:
\[
I=\int_0^{\pi/2}\log\sinx\,dx=\int_0^{\pi/2}\log\sin(\pi/2-x)\,dx.
\]
Since\(\sin(\pi/2-x)=\cosx\),theintegralbecomes:
\[
I=\int_0^{\pi/2}\log\cosx\,dx.
\]
Addingthetwoexpressionsfor\(I\):
\[
2I=\int_0^{\pi/2}(\log\sinx+\log\cosx)\,dx=\int_0^{\pi/2}\log(\sinx\cosx)\,dx.
\]
Usingtheidentity\(\sinx\cosx=\frac{1}{2}\sin2x\),weget:
\[
2I=\int_0^{\pi/2}\log\left(\frac{1}{2}\sin2x\right)\,dx=\int_0^{\pi/2}\log\frac{1}{2}\,dx+\int_0^{\pi/2}\log\sin2x\,dx.
\]
Thefirsttermsimplifiesto:
\[
\int_0^{\pi/2}\log\frac{1}{2}\,dx=\log\frac{1}{2}\cdot\frac{\pi}{2}=-\frac{\pi}{2}\log2.
\]
Forthesecondterm,usingthesubstitution\(u=2x\),weget:
\[
\int_0^{\pi/2}\log\sin2x\,dx=\frac{1}{2}\int_0^\pi\log\sinu\,du.
\]
Bysymmetryof\(\sinu\),theintegralevaluatesto\(0\).Thus:
\[
2I=-\frac{\pi}{2}\log2\quad\Rightarrow\quadI=-\frac{\pi}{2}\log2.
\]